
Traps, Invariants, and Dead-ends

Nir Lipovetzky
University of Melbourne

Melbourne, Australia
@unimelb.edu.au∗

Christian Muise
MIT CSAIL

Massachusetts, USA
cjmuise@mit.edu

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, SPAIN
hector.geffner@upf.edu

Abstract

We consider the problem of deriving formulas that capture
traps, invariants, and dead-ends in classical planning through
polynomial forms of preprocessing. An invariant is a formula
that is true in the initial state and in all reachable states. A trap
is a conditional invariant: once a state is reached that makes
the trap true, all the states that are reachable from it will sat-
isfy the trap formula as well. Finally, dead-ends are formulas
that are satisfied in states that make the goal unreachable. We
introduce a preprocessing algorithm that computes traps in k-
DNF form that is exponential in the k parameter, and show
how the algorithm can be used to precompute invariants and
dead-ends. We report also preliminary tests that illustrate the
effectiveness of the preprocessing algorithm for identifying
dead-end states, and compare it with the identification that
follows from the use of the h1 and h2 heuristics that cannot
be preprocessed, and must be computed at run time.

1 Introduction
The detection of dead-ends, states from which the goal
is not reachable, is a crucial ability in many forms of
planning, including classical, non-deterministic, and prob-
abilistic planning (Hoffmann 2011; Junghanns and Schaef-
fer 1998; Kolobov et al. 2011; Muise, McIlraith, and Beck
2012). Indeed, a plan or policy that must reach the goal with
certainty must definitely avoid reaching dead-end states. In
spite of the importance of dead-ends in planning, however,
there has not been much work in the area. State-of-the-art
classical planners do not feature specific mechanisms for
detecting dead-ends, and recognize dead-ends implicitly, in
the delete relaxation only, when heuristic estimators based
on the delete relaxation yield infinite values. Heuristics that
are not based on the delete relaxation, like the hm heuris-
tics (Haslum and Geffner 2000) and variations for m > 1,
can detect a larger class of dead-ends, but these heuristics
are expensive and cannot be computed at run time for every
new node in the (forward) search, and thus such heuristics
have been used mainly for detecting unsolvability, that is,
when the initial problem state is a dead-end (Helmert 2006;
Lipovetzky and Geffner 2011; Bäckström, Jonsson, and
Ståhlberg 2013; Hoffmann, Kissmann, and Torralba 2014).

∗firstname.lastname
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The situation is different for invariants (Rintanen 2000;
Gerevini and Schubert 2001). Invariants are formulas that
are true in all reachable states, and they are usually com-
puted at preprocessing. Two types of invariants that are com-
monly used are mutex constraints (Blum and Furst 1997),
i.e., invariants of the form ¬(p1 ∧ p2) for atoms p1 and p2,
and disjunctive constraints (Helmert 2006), i.e., invariants of
the form p1∨p2∨· · ·∨pn. Together such invariants yield the
multivalued variables that are extracted from boolean prob-
lem representations (Helmert 2006).

In this paper, we establish a relation between invariants
and dead-ends, and develop a preprocessing algorithm for
computing them both. The key concept in our analysis will
be the notion of traps. Syntactically, traps are formulas that
stand for conditional invariants; namely, once a state is
reached that satisfies a trap formula, all the states that can
be reached from that state will satisfy the formula as well.
A standard invariant is thus a trap that is true in the initial
state, while a trap that is mutually exclusive with the goal
denotes a dead-end formula; a formula that is true in dead-
end states only. As a result, the proposed algorithm for com-
puting traps is also an algorithm for computing invariants
and dead-ends. We propose an algorithm that computes traps
in k-DNF form: trap formulas in disjunctive normal form
whose terms have at most k atoms. The algorithm is simple
and clean, operates as a preprocessing step, and runs in time
that is exponential in the k parameter. We report also prelim-
inary experimental tests that illustrate its effectiveness for
identifying dead-end states, and compare it with the identi-
fication that follows from the use of the h1 and h2 heuristics
that cannot be preprocessed, and must be computed at run
time.

2 Logic
The above notions are all simple, but it is worth making them
explicit before presenting the algorithm. We assume a clas-
sical planning problem P where states provide an interpre-
tation to the formulas in that language. A state s is reachable
from another state s′ (in the problem P ) if there is an ac-
tion sequence (possibly empty) that maps s into s′. A state
is reachable if it is reachable from the initial state s0 of P .

Definition 1 (Invariant) An invariant is a formula that is
true in all reachable states.



Definition 2 (Dead-end) A dead-end formula is a formula
that is true only in states from which no goal states are
reachable.

Definition 3 (Trap) A trap is a formula such that if a state
s satisfies the formula, all states reachable from s satisfy the
formula as well.

The notion of a trap generalizes the notion of invariant,
and connects it with dead-end formulas:

Theorem 4 (Invariant Trap) A formula is an invariant if
and only if it is a trap that is true in the initial state.

Theorem 5 (Dead-end Trap) If the terms ti in a DNF trap
t1∨t2∨· · ·∨tn are mutually exclusive with the (conjunctive)
goal, then the trap is a dead-end formula.

Recall that two atoms p1 and p2 are said to be mutually
exclusive (mutex) when ¬(p1∨p2) is an invariant, and there
are effective algorithms for computing such mutexes.

These simple theorems indicate how the computation of
traps can be used for deriving invariants and dead-end for-
mulas. For obtaining dead-end formulas, we compute DNF
traps whose terms are mutex with the goal. For obtaining
invariants, select the traps that are true in the initial state.
Furthermore, if a trap is both an invariant and a dead-end
formula, it means that the problem is not solvable.

3 Algorithm
The algorithm for computing traps in k-DNF is conceptu-
ally simple and runs in time that is exponential in the pa-
rameter k. We call it Trapper. Trapper builds a graph whose
nodes are the tuples Bi of at most k atoms in the problem,
along with a dummy node D. For computing dead-end for-
mulas, the only tuples Bi considered are the ones that are
mutex with the goal. Otherwise, neither the goal or the ini-
tial state of the problem play a role in the construction of the
graph that follows exclusively from the action descriptions.
We assume STRIPS actions a for simplicity with precon-
dition, add, and delete lists Pre(a), Add(a), Del(a). The
k-trap graph, or simply trap graph, is constructed as:

1. Initialize the k-trap graph whose nodes are the tuples Bi

of at most k atoms not mutex with one another, along with
the dummy node D. For computing dead-end formulas,
the only tuples considered are those mutex with the goal.

2. Consider action a applicable in node Bi if Pre(a) is not
mutex with Bi

3. For an action action a applicable in Bi define the a-
children of Bi as the nodes Bj such that Bj is contained
in the progression of Bi through the action a defined as
Bj ⊆ ((Bi ∪ Pre(a)) \Del(a)) ∪Add(a).

4. For an action a applicable in Bi, if the set of a-children of
Bi is empty, set D as the only a-child of Bi.

Once the trap graph is built, its nodes are marked starting
with the dummy node D after the following propagation:

• Mark the dummy node D.
• Mark node Bi if there is an action a applicable in Bi such

that all the a-children of Bi are marked.

(a) (b)

Figure 1: The left sub-Figure illustrates a Sokoban instance
where block B1 has to be pushed towards the goal loca-
tion G. If the block is pushed towards any of the grey lo-
cations the problem becomes unsolvable. In the right Sub-
figure blocks B1 and B2 need to be pushed towards the goal
positions G. The player can be located in any grey location.

• Terminate when no more nodes can be marked.

If non-empty, the set of unmarked nodes represents a trap:

Theorem 6 (Computation of Traps) Let T stand for the k-
DNF formula whose terms are the tuples Bi associated with
the nodes that have not been marked at the end of the above
process. Then T is a trap.

Proof. If all nodes are marked, T is empty (i.e., false), and
is trivially a trap as no states satisfies it. Otherwise, we show
that the following conditional invariant must hold: if a state
entails a disjunct Bi ∈ T , then for any action a applicable
in s, the progression s′ of s through a entails some Bj ∈
T . Indeed, Bi is not marked as Bi ∈ T , from the marking
procedure, there must be an a-child of Bi, call it Bk, that
is not marked either and belongs to T as well. But if Bk is
an a-child of Bi, from the definition of a-children (cf. step
3) and the fact that action a must be applicable in Bi if it is
applicable in s (cf. step 2), it follows that Bk must hold in
s′. This means that the conditional invariant holds for j = k
and hence that T is a trap. �

The application of this result to the computation of invari-
ants and dead-end traps is direct, from the discussion above.
In the experiments below we focus on the computation of
dead-end formulas only:

Theorem 7 (Computation of Dead-end Traps) Let the tu-
ples Bi in the k-trap graph be restricted to those that are
mutex with the goal, and let T be as in Theorem 6. Then T
is a dead-end trap.

In problems where there is an atom representing the nega-
tion of each fluent, the algorithm will be complete when k is
set to the number of fluents.

4 Example
We illustrate the traps derived in the Sokoban domain.
Sokoban consists of a player pushing each block towards
a goal location. Given that blocks can only be pushed, not
pulled back, it is easy to fall into dead-ends.

Consider the example of Figure 1a, where a single block
is located in the middle (2,2) of a 3x3 grid. The goal is to
push the block up into location (1,2) from location (2,2), but
if the player pushes the block towards any other location, the
problem becomes unsolvable. To capture all the dead-end



Figure 2: Partial k-trap graph of instance shown in Figure
1a. Dashed-edges propagate the mark from Dummy. The
Bi in blue are marked at the end of the propagation.

states we just need to consider Bi tuples of size 1 and derive
the 1-trap ∨x∈Pos\{(1,2),(2,2)}{(at block x)}, where Pos is
the set of locations in the grid. This example shows how in
preprocessing our approach can detect the same dead-end
states that h1 and h2 would detect if they are computed at
every state in the search. To illustrate how we can capture
dead-end states that are not detected by either h1 or h2,
consider the example in Figure 1b. In this example a large
narrow passage connects the bottom area of the main grid
with its top area. Two blocks are considered; one located
initially at the entrance and the other at the exit of the pas-
sage. The goal is to move these blocks into the middle-right
area of the main grid. If the player is initially located at
any location of the grid, marked in grey in the Figure, the
problem becomes unsolvable. The solvable instances need
to place the player in the passage between the blocks. h1

and h2 would not detect any of the unsolvable instances,
as the entrance and exit positions become free in their
relaxation once the blocks are pushed. In order to capture
all the unsolvable instances we need the 3-DNF formula
{∨x∈Grid; y1,y2∈Psg; y1 6=y2

{(atpx), (ats1y1), (ats2y2)} }
where Psg stands for the passage and Grid for
the main area. Note that the 2-DNF formula
{∨y1,y2∈Psg; adj(y1,y2){(ats1y1), (ats2y2)} } would
capture only the dead-ends when the two blocks are in
adjacent positions within the passage. These dead-ends
would be captured by h2, but not by h1.

We are going to show how we derive the 1-DNF for-
mulae for the first example by first identifying the set of
Bi’s of size 1 that are mutex with the goal (Theorem 5).
We will then build the k-graph and perform the propagation
from the Dummy node to finally identify the Bi’s that have
not been marked as part of the trap. The set of Bi mutex
with the block being at position (1,2) (i.e., the goal loca-
tion) are (at block x) for every position that is not (1,2),
(at player 1, 2) as the player cannot be in the goal location
at the same time as the block, and (clear1, 2) as it states that
no block is located at the goal position.

The k-Graph will contain the aforementioned set of Bi

and hyperedges connecting each Bi to a set of Bj’s, labeled
by a, if the Bj’s are the a-children of Bi in the k-Graph.
That is, we now have to add a hyper-edge from each Bi to
each Bj entailed by the progression of Bi through every ap-

plicable action a. A partial trap graph is shown in Figure
2. Let’s consider the Bi = {(at player 1, 2)} (at goal lo-
cation). The applicable actions are move down,right or left
and push-down block. The progression through move-down
is entailed by only one Bj , namely {(clear 1, 2)}. There-
fore a hyper-edge from {(at player 1, 2)} to {(clear 1, 2)}
will be added. A hyper-edge towards {(clear 1, 2)}
is added as well through the progression of action
move-right and move-left. Consider now the progression
through action push-down. The resulting partial state is
{(at block 3, 2), (at player 2, 2), (clear 1, 2)}. This par-
tial state is entailed by two Bj’s, {(clear 1, 2)} and
{(at block 3, 2)}, so a hyper-edge from {(at player 1, 2)}
to {(clear 1, 2)} and {(at block 3, 2)} will be added
to the graph. The only two Bi’s that have an edge to
the Dummy node among other edges to other Bj are
{(at block 2, 2)} and {(clear 1, 2)}. The progression
through action push-up block of both Bi’s result in partial
state {(at block 1, 2), (at player 2, 2), (clear 2, 3)}, which
is not entailed by any other Bj , as all the single fluents
are not mutex with the goal. The other edges relevant to
the propagation phase are the ones from {(clear 1, 2)} to
{(at player 1, 2)}. These edges result from the other appli-
cable actions on {(clear 1, 2)}, besides push-up block lead-
ing to dummy. These actions are move down, right or left
towards {(clear 1, 2)}.

Once the k-Graph is fully generated, the propagation
starts marking the Dummy node, and then marking nodes
that have a hyper-edge with all its children marked. This
process is performed until a fix point. Figure 2 shows
the relevant hyper-edges from the graph that propagate the
mark and the resulting Bi that end-up marked. The tuples
{(at block 2, 2)} and {(clear 1, 2)} are marked as they
have a hyper-edge to the dummy node. The next Bi marked
is {(at player 1, 2)} as either of the hyper-edges from ac-
tion move down,right or left have all their children marked,
namely {(clear 1, 2)}. No other node is marked. The final
trap in k −DNF will be made by the remaining unmarked
Bi, i.e. ∨x∈Pos\{(1,2),(2,2)}{(at block x)}.

5 Preliminary Evaluation
We evaluated the algorithm for deriving traps over a sub-
set of benchmarks known to contain dead-ends. All algo-
rithms are implemented using the LAPKT toolkit (Ramirez,
Lipovetzky, and Muise 2015). In theses experiments we con-
sider only 1-DNF and 2-DNF formulas, named 1-traps and
2-traps respectively. Processes are limited to 1h of running
time (including trap construction) and 2GB of RAM, and
all experiments were conducted on a Linux desktop with
2.5GHz Intel Processors. We derive mutex fluents comput-
ing h2 once from the initial state. Averages per domain
are computed among commonly solved instances by all ap-
proaches that solve at least 1 problem. The first experiment,
summarized in Table 1, aims to assess empirically the power
of the k-DNF formulae for detecting dead-ends. We expand
the same 10,000 states in a Breadth-First search (BRFS) for
all methods and compare the number of dead-ends captured
by the traps, derived in preprocessing, with respect to the
number of dead-ends captured by h1 and h2 computed at ev-



h1 1-trap h2 2-trap
T Prn T Prn T Prn T Prn

Airport (50) 1.6 640 0.8 195 152.9 683 481.7 665
Floortile-sat14 (20) 4.7 7278 0.9 6295 177.5 7777 27.5 9549
Mystery (30) 8.9 921 1.1 2399 720.3 3378 236.9 2526
Parc-sat11 (20) 6.4 5874 1.3 8695 1362.9 8154 233.52 9155
Pegsol-sat11 (20) 0.9 461 0.4 0 42.5 1155 7.3 0
Sokoban-sat11 (20) 3.9 2681 0.9 2472 589.6 2776 168.5 2683
Trucks (30) 13.3 18663 0.8 18650 346.3 18688 3.9 18663
Wood-sat11 (20) 2297.0 299820 20.0 299820 - - - -
Avg. Time 584.2 6.5 (0.1) 848.2 289.9 (286.7)

Table 1: Times (sec.) and number of nodes generated that are
pruned in a BrFS search cut after expanding 10,000 nodes
using h1, 1-traps, h2, and 2-traps. Numbers are Blue when
x-trap outperforms hx. In Bold the best performers.

ery state. 1-traps detects more dead-end states than h1 in 2
out of 8 domains, 2-traps in 3 domains compared to h2, and
6 domains compared to h1. {1,2}-traps are empty in Pegsol,
and both 2-traps and h2 run out of time in Woodworking.
1-traps is by far the fastest approach expanding the 10,000
states, spending on average 0.1 out of 6 seconds computing
traps, while 2-traps spends 286.7 out of 289.9 seconds.

As it can be seen from the table, the precomputed k-traps
and the hk heuristics computed at run-time do not identify
the same dead-end states, even if they both reason with tu-
ples of k atoms. We can see the difference with a simple
example. Let’s assume that we have a STRIPS problem en-
coding two multivalued variables X and Y that can take three
values 1,2,3, starting with values 1. The goal is for both vari-
ables to have value 3. The STRIPS actions allow to increase
the value of a variable by 1, but the action that increases X
to 3 resets Y to 1, and similarly, the action that increases
Y to 3, resets X to 1. The problem is thus unsolvable, yet
the heuristic h1 will ignore the deletes and hence the resets,
and yield a value of 2 for the heuristic at the initial state. On
the the other hand, it’s easy to see that the 1-DNF formula
whose terms are the atoms X=1, X=2, Y=1, and Y=2 form a
1-traps. This is because all the terms (atoms) are mutex with
the goal, and in addition, every action that deletes one atom
in this set, adds another atom in the set as well, including the
actions that add X=3 or Y=3.

The power of 2-traps in Floortile has a substantial impact
in our second experiment, summarized in Table 2. We ex-
plore a preliminary use of the k-DNF formulae in optimal
planning, and evaluate how a plain BRFS benefits from the
traps pruning dead-ends as well as the optimal planner A∗
+ LM-Cut heuristic (Helmert and Domshlak 2009), as a ref-
erence of a high performance optimal planner1. 1-traps and
2-traps improve the coverage over BRFS or LM-CUT across
all the benchmarks but Woodworking and Pegsol. In the for-
mer, even if we trap dead-ends, it is not enough to increase
coverage, while in the latter we derive only the empty trap,
false. In Airport, while 1-traps solves 1 more instance than
BRFS, 2-traps solves less due to the sheer number of Bi’s,
timing out during the 2-traps construction. In Trucks we wit-
ness the biggest pruning impact, 1-traps reduces the search
by a factor of 101.70, and 2-traps by 733.44, solving 2 and

1Costs are ignored in LM-Cut as we compare with BRFS.

LM-Cut LM-Cut-1 LM-Cut-2 BRFS 1-trap 2-trap
#S/T #S/T #S/T #S/T #S/T G #S/T G

24 / 1.7 24 / 3.2 16 / 382.8 18 / 1.8 19 / 1.2 1.86 15 / 375.6 3.97
2 / 1965.5 2 / 1944.1 5 / 1839.7 0 / 0 0 / 0 – 8 / 86.6 –
15 /6.6 26 / 11.0 22 / 125.5 13 / 10.1 24 / 5.0 1 18 / 99.5 1
3 / 56.4 3 / 45.2 3 / 95.3 0 / 0 0 / 0 – 1 /113.3 –
15 / 68.0 15 / 72.1 15 / 79.0 15 / 6.0 15 / 4.5 1 15 / 10.07 1
7 / 220.3 7 / 184.8 6 / 174.4 2 / 14.4 7 / 3.8 3.83 7 / 26.7 4.98
6 / 0.3 7 / 0.2 7 / 0.5 2 / 9.4 4 / 0.2 101.7 5 / 0.7 733.44
1 / 0.1 1 / 0.1 1 / 0.2 1 / 1.0 1 / 0.4 1 1 / 0.3 1
73 / 386.5 86 / 376.9 76 / 449.6 51 / 10.7 70 / 3.8 70 / 178.2

Table 2: Performance of LM-Cut (1,2 traps), plain BRFS,
BRFS + 1-trap or 2-trap pruning. #S stands for the number of
solved instances, T as avg. time in sec., and G as the reduc-
tion factor in terms of generated states w.r.t plain BRFS (e.g.,
half of the nodes are generated w.r.t BRFS when G = 2).

3 more instances than BRFS respectively. Another domain
where 2-traps has a huge impact is in Floortile where it is
the only approach that manages to solve 8 instances, while
BRFS and 1-traps solves none, and LM-Cut solves 2. The
only unsolvable tasks were 9 instances of Mystery, 2 in-
stances detected by the FD-parser in preprocessing. Among
the remaining 7 unsolvable instances 1-traps directly prunes
all the children of the initial state, while 2-traps prunes 4
and times-out in 3. Overall, LM-Cut with 1-traps pruning
has higher coverage, while BFRS with 1-traps is the fastest.

It remains as future work to explore how to enhance other
classical and non classical planners. One avenue is to use the
traps B1...Bn to make the negation of these traps an invari-
ant of the classical problem, E.g. if the Bi’s have size 2, one
adds the negation of one of the 2 atoms to the preconditions
of actions that add the other atom. These DNFs can be com-
piled into classical problems to enforce their negation in all
reachable states.

6 Summary
The notion of traps has been explored before in the context
of non-deterministic and probabilistic planning (Ramı́rez
and Sardiña 2014; Kolobov et al. 2011; Keyder and Geffner
2008), but key differences are that our approach is purely
syntactic, executed in preprocessing only (unlike heuristics
h1 and h2), and polynomial for fixed k.

For the future, we would like to explore the relation be-
tween traps, dead-ends, and different heuristics such as crit-
ical path heuristics like hm, and pattern database heuristics.
For example, it is trivial to show that if s is a dead-end in
the delete relaxation (i.e., h1(s) =∞), then the conjunction
made up of the negations of the atoms not reachable from
s in the relaxation that includes some goal atom is a trap,
although not necessarily a k-trap for a bounded k. Also, if
the projection of a problem on a subset DB of k multivalued
variables (Edelkamp 2001), has optimal cost h∗DB(ŝ) = ∞,
where ŝ is the projection of the state s over such variables,
then clearly s is a dead-end that can be identified by a k-trap
defined over such variables. There is thus much to be learned
about these relationships, and much to be gained computa-
tionally given the importance of dead-end detection in a va-
riety of planning models.



References
Bäckström, C.; Jonsson, P.; and Ståhlberg, S. 2013. Fast
detection of unsolvable planning instances using local con-
sistency. In Proceedings of the Sixth Annual Symposium on
Combinatorial Search, SOCS 2013, Leavenworth, Washing-
ton, USA, July 11-13, 2013.
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial intelligence 90(1):281–
300.
Edelkamp, S. 2001. Planning with pattern databases. In Pre-
proceedings of the Sixth European Conference on Planning
(ECP 2001).
Gerevini, A. E., and Schubert, L. 2001. Discoplan: an effi-
cient on-line system for computing planning domain invari-
ants. In Pre-proceedings of the Sixth European Conference
on Planning (ECP 2001).
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In Proceedings of the Fifth International
Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS 2000), 140–149.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: what’s the difference anyway? In
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. ”Dis-
tance”? Who Cares? Tailoring Merge-and-Shrink Heuristics
to Detect Unsolvability. In 21st European Conference on
Artificial Intelligence (ECAI 2014), 441–446.
Hoffmann, J. 2011. Analyzing search topology without run-
ning any search: On the connection between causal graphs
and h+. Journal of Artificial Intelligence Research (JAIR)
155–229.
Junghanns, A., and Schaeffer, J. 1998. Single-agent search
in the presence of deadlocks. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence (AAAI 1998),
419–425.
Keyder, E., and Geffner, H. 2008. The hmdpp planner for
planning with probabilities. Sixth International Planning
Competition at (ICAPS 2008).
Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011.
Heuristic search for generalized stochastic shortest path
mdps. In Proceedings of the Twenty-First International
Conference on Automated Planning and Scheduling (ICAPS
2011).
Lipovetzky, N., and Geffner, H. 2011. Searching for
plans with carefully designed probes. In Proceedings of the
Twenty-First International Conference on Automated Plan-
ning and Scheduling (ICAPS 2011), 154–161.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012. Im-
proved non-deterministic planning by exploiting state rele-
vance. In Proceedings of the Twenty-Second International

Conference on Automated Planning and Scheduling (ICAPS
2012).
Ramı́rez, M., and Sardiña, S. 2014. Directed fixed-point
regression-based planning for non-deterministic domains. In
Proceedings of the Twenty-Fourth International Conference
on Automated Planning and Scheduling (ICAPS 2014).
Ramirez, M.; Lipovetzky, N.; and Muise, C. 2015.
Lightweight Automated Planning ToolKiT. http://
lapkt.org/. Accessed: 2016-03-11.
Rintanen, J. 2000. An iterative algorithm for synthesizing
invariants. In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence (AAAI 2000), 806–811.


