
Branching and Pruning: An Optimal Temporal POCL Planner
based on Constraint Programming∗

Vincent Vidal
CRIL - Université d’Artois
rue de l’université - SP16

62307 Lens Cedex, FRANCE
vidal@cril.univ-artois.fr

Héctor Geffner
ICREA & Universitat Pompeu Fabra

Paseo de Circunvalacion 8
08003 Barcelona, SPAIN
hector.geffner@upf.edu

Abstract

A key feature of modern optimal planners such as Graphplan
and Blackbox is their ability to prune large parts of the search
space. Previous Partial Order Causal Link (POCL) planners
provide an alternative branching scheme but lacking compa-
rable pruning mechanisms do not perform as well. In this pa-
per, a domain-independent formulation of temporal planning
based on Constraint Programming is introduced that success-
fully combines a POCL branching scheme with powerful and
sound pruning rules. The key novelty in the formulation is
the ability to reason about supports, precedences, and causal
links involving actions that are not in the plan. Experiments
over a wide range of benchmarks show that the resulting op-
timal temporal planner is much faster than current ones and is
competitive with the best parallel planners in the special case
in which actions have all the same duration.

Introduction
The search for optimal plans, like the search for optimal so-
lutions in many intractable combinatorial optimization prob-
lems, can be understood along two dimensions: the branch-
ing scheme used for expanding partial solutions, and the
pruning scheme used for discarding them. Most AI plan-
ning frameworks can be understood in these terms. Opti-
mal state-based planners, for example, branch by perform-
ing state regression or progression, and prune by comparing
the estimated cost of the partial plans with a given bound
(Haslum & Geffner 2000). Optimal SAT and CSP plan-
ners, on the other hand, branch by picking a variable and
trying each of its values, pruning branches and domain val-
ues that lead to an inconsistency (Kautz & Selman 1999;
Do & Kambhampati 2000). Pruning is a key operation in
both cases: in the first, it is the result of the use of ex-
plicit lower bounds, in the second, of constraint propaga-
tion mechanisms and bounds encoded in the planning graph
(Blum & Furst 1995). This pruning power distinguishes
modern planners such as Graphplan from its predecessors
(whether optimal or not). Indeed the main limitation of tra-
ditional Partial Order Causal Link (POCL) planners is that

∗H. Geffner partially supported by Grant TIC2002-04470-C03-
02, MCyT, Spain.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

they provide an alternative branching scheme but no compa-
rable pruning mechanisms. The result is that dead-ends are
discovered late and the size of the search tree explodes much
sooner.

Due to its expressive power, however, POCL planning
remains an appealing framework for planning, and in par-
ticular temporal planning (Smith, Frank, & Jonsson 2000).
The challenge is to close the performance gap that separates
POCL planners from modern planners while retaining the
optimality guarantees. In this paper, we undertake this chal-
lenge, extending a POCL temporal planner with powerful
and sound pruning mechanisms based on a constraint pro-
gramming formulation that integrates existing lower bounds
with propagation rules that reason with supports, prece-
dences, and causal links in novel ways. The experiments
show that the resulting planner is faster than current optimal
temporal planners and is competitive with current parallel
planners in the special case in which action durations are all
uniform.

A couple of remarks before proceeding. First, the formu-
lation and implementation that we present is not completely
general: we deal only with plans in which every (ground)
action is executed at most once; plans that we call canonical
(Geffner 2001). Canonical plans are thus halfway between
full temporal planning and scheduling: while in scheduling
typically every action is done exactly once, and in canonical
planning it is done at most once, in full temporal planning,
it may be done an arbitrary number of times. As we will
see, for most benchmarks in sequential, parallel, or tempo-
ral planning, the optimal plans are canonical in this sense
but they are not always so. Later on we will discuss briefly
how to remove this assumption and preliminary results we
have obtained in that direction.

The integration of heuristic functions in a POCL planning
framework has been pursued recently in (Nguyen & Kamb-
hampati 2001; Younes & Simmons 2003). However, no at-
tempt at the generation of optimal plans is made in these pro-
posals. Here we make use of some of the ideas in (Nguyen
& Kambhampati 2001) like the use of structural mutexes
for extending the notion of threats in POCL planning, and
the use of disjunctive constraints for expressing the possi-
ble resolution of threats. Temporal POCL planners featuring
constraint propagation mechanisms include IxTET (Laborie
& Ghallab 1995) and RAX (Jonsson et al. 2000). These

planners are more expressive than ours (e.g., in the use of
resources), but their pruning mechanisms are weaker as they
tend to reason about actions in the current partial plan only.
Something similar occurs with formulations of POCL plan-
ning as Dynamic CSPs (Joslin & Pollack 1996). A previous
CP approach to planning over various specific domains is
given in (Van Beek & Chen 1999). We borrow some el-
ements from this formulation, like the use of distances of
various sorts, yet our approach is domain-independent. The
broad ideas on which the current proposal is based have been
outlined first in (Geffner 2001), and a preliminary imple-
mentation for parallel planning was reported earlier in (Pala-
cios & Geffner 2002).

Preview
In order to illustrate the capabilities of the proposed planner,
let us consider the problem TOWER-n where the task is to
build a tower with n blocks b1, . . . , bn in that order, b1 on
top, which initially lie all on the table. The single optimal
plan for this problem involves picking each block bi from the
table and stacking it on block bi+1, in order, from i = n− 1
down to 1. The reasoning mechanisms underlying the pro-
posed planner, that we call CPT, yield a solution to this prob-
lem by pure inference and no search. This is remarkable
as the inferences are not trivial and existing optimal plan-
ners do not scale up well in this domain (see Table 1). How
does CPT do it? First, it infers that each subgoal on(bi, bi+1)
must be achieved by the action stack(bi, bi+1) and then that
these actions must be ordered sequentially, stack(bn−1, bn)
first, then stack(bn−2, bn−1), and so on. CPT also infers
that the first action cannot start earlier than t = 1, the sec-
ond not earlier than t = 3, etc. Then, after setting the bound
B = 2(n − 1) on the makespan to the earliest starting time
of the action End, it infers that the starting times of all ac-
tions must be set to their lowest possible values, and adds the
actions pick(bi) at their correct times as a result of further
reasoning that prunes the other possible supports and times.

Problem CPU time (sec.) Mkspn
CPT BBOX IPP TP4

tower-8 0.33 2.95 0.05 17.68 14
tower-9 0.64 7.28 0.11 887.7 16
tower-10 1.01 13.6 0.38 - 18
tower-11 1.69 28.2 2.26 - 20
tower-12 3.61 - 15.35 - 22
tower-13 5.83 - 123.78 - 24
tower-14 9.70 - - - 26
tower-15 13.65 - - - 28

Table 1: Results for TOWER-n domain

Table 1 shows results for CPT in relation to other three
modern planners: two optimal parallel planners, Blackbox
(with Chaff) (Kautz & Selman 1999) and IPP (Koehler et
al. 1997), and an optimal temporal planner TP4 (Haslum &
Geffner 2001). While most domains are not like TOWER-
n and require search, the domain illustrates the strength of
CPT inference mechanisms that often manage to prune the
search space considerably. Over the next few sections we

will see how this is achieved and how cost-effective these
mechanisms are in other parallel and temporal domains.

Background
The proposed scheme combines lower bounds, a branching
scheme that parallels the one used in POCL planning, and a
constraint-directed branch-and-bound search.

Lower Bounds
A recent key development in AI planning is the use of
heuristic estimators automatically extracted from problem
encodings (McDermott 1996; Bonet, Loerincs, & Geffner
1997). A parameterized family of tractable admissible
heuristics or lower bounds hm, m = 1, 2, . . ., for sequential
and parallel planning is formulated in (Haslum & Geffner
2000). The heuristics hm recursively approximate the cost
of a set of atoms C by the cost of the most costly subset of
size m in C. For m = 2, in the parallel setting, hm is equiv-
alent to the heuristic encoded in the planning graph. The hm

heuristics are extended in (Haslum & Geffner 2001) to esti-
mate makespan (completion time) in a temporal setting. The
measures hm

T (C) are lower bounds on the time needed to
make C true from the initial situation. In CPT these heuris-
tics are used in various ways.

Branching
Branching in AI planning is most often discussed in terms
of the space in which the search for plans is done, with state
or directional planners searching in the space of states, and
partial order planners searching in the space of plans (Kamb-
hampati, Knoblock, & Yang 1995). All planners, however,
can also be seen as searching in the space of plans, with
directional planners taking advantage of a decomposition
property by which a partial plan tail or head can be sum-
marized by the state obtained by regressing the goal or pro-
gressing the initial state. This decomposition is not possi-
ble in non-directional partial plans as arising from POCL,
SAT, or CSP formulations. In all cases, however, in order
to search effectively for optimal plans it is necessary to de-
tect and prune early partial plans that can only lead to solu-
tions with cost exceeding a certain bound B. In state-based
planners this is accomplished by comparing the bound B
with the value of an explicit evaluation function; in SAT and
CSP formulations, this is achieved by means of clauses and
constraints. Planning schemes based on POCL branching
lack comparable pruning mechanisms and do not perform as
well. Recent proposals like (Nguyen & Kambhampati 2001;
Younes & Simmons 2003) extend POCL planning with
guiding non-admissible heuristics but leave optimality con-
siderations aside. Here we aim to achieve both good perfor-
mance and optimality in the more general setting of temporal
planning.

Temporal Planning
A Strips temporal planning problem is a tuple P =
〈A, I,O,G〉 where A is a set of ground atoms, I ⊆ A and
G ⊆ A represent the initial and goal situations, and O is
the set of ground Strips operators, each with precondition,

add, and delete list pre(a), add(a), and del(a), and dura-
tion dur(a). As in Graphplan, two actions a and a′ inter-
fere when one deletes a precondition or positive effect of the
other. We follow the simple model of time in (Smith & Weld
1999), and define a valid plan as a plan where interfering ac-
tions do not overlap in time. We are interested in computing
valid plans with minimum makespan. When all actions have
uniform durations, the model reduces to the standard model
of parallel planning.

Temporal POCL Planning
Branching in POCL planning proceeds by picking a ‘flaw’
(open preconditions or threats) and trying each of the possi-
ble repairs (Weld 1994; Kambhampati, Knoblock, & Yang
1995). A state or partial plan in the resulting search space
corresponds to a set of commitments represented by a tuple
σ = 〈Steps,Ord,CL,Open〉, where Steps is the set of
actions in the partial plan, Ord is a set of precedence con-
straints on Steps, CL is a set of causal links, and Open is
a set of open preconditions (as in most current planners, we
assume that all actions are grounded). A state is terminal
if it is inconsistent (i.e., the ordering Ord is inconsistent or
contains flaws that cannot be fixed) or is a goal (is consistent
and contains no flaws).

The adaptation of POCL branching to the temporal set-
ting is rather direct (e.g., (Laborie & Ghallab 1995)). Here
we consider a simple extension obtained by adding tem-
poral variables T (a) standing for the starting time of ac-
tion a for a ∈ Steps. These temporal variables have
initial domains T (Start) = 0, T (End) = B, and
T (a) :: [0, B − dur(a)] where B is the bound on the
makespan (Start and End are the two ‘dummy’ actions
used in POCL planning). The resulting states have the form
σ = 〈Steps,OrdT , CL,Open, T (·)〉 where the qualitative
precedence ordering Ord is replaced by the temporal vari-
ables T (a), a ∈ Steps, and the set OrdT of temporal con-
straints (the precedence ordering Ord from classical POCL
planning can be retained but is not strictly necessary).

As before, branching proceeds by picking a ‘flaw’ in a
non-terminal state σ and applying the possible repairs. Open
precondition flaws [p]a in σ are solved by selecting an ac-
tion a′ that supports p, and adding the causal link a′[p]a to
CL and the temporal constraint T (a′) + dur(a′) ≤ T (a) to
OrdT . The action a′ is added to Steps if a′ 6∈ Steps and in
such case a variable T (a′) for a′ is created. Similarly, causal
link threats, i.e., situations in which an action a ∈ Steps
may delete a condition p ∈ del(a) in a causal link a1[p]a2

in CL, are solved by adding one of the temporal constraints
T (a) + dur(a) ≤ T (a1) or T (a2) + dur(a2) ≤ T (a) to
OrdT . A terminal state in the resulting space is either a state
with an inconsistent set of temporal constraints (a dead-end)
or a state with a consistent set of temporal constraints and
no flaws (a goal).

The temporal constraints in OrdT form a Simple Tem-
poral Problem (STP) (Dechter, Meiri, & Pearl 1991)
whose consistency can be tested efficiently by applying
a form of constraint propagation known as bounds con-
sistency (Lhomme 1993), where the lower and upper

bounds Tmin(a) and Tmax(a) of the variables T (a) in con-
straints of the form T (a) + dur(a) ≤ T (a′) are updated
as Tmax(a) := min[Tmax(a), Tmax(a′) − dur(a)] and
Tmin(a′) := max[Tmin(a′), Tmin(a)+dur(a)] until a fixed
point is reached or a variable domain becomes empty.

With two additional provisions, it is possible to verify
that the resulting branching scheme is sound and complete;
i.e., terminal goal-states encode valid temporal plans P with
makespan B where actions execute at their earliest possible
times, and one such terminal goal state is generated when
one such plan exists.

The two required provisions are the following. First, in
the absence of a qualitative precedence ordering on actions
as in POCL planning, we need to regard an action a delet-
ing the condition p in a causal link a1[p]a2 as a threat when
neither of the two temporal conditions Tmin(a) + dur(a) ≤
Tmin(a1) and Tmin(a2)+dur(a2) ≤ Tmin(a) hold. This is
because the lower bounds Tmin provide a consistent solution
to a STP if the STP is consistent. Second, in accordance with
the semantics, we need to ensure that interfering actions do
not overlap in time. For that, let us say that a pair of inter-
fering actions are precondition-interfering when one action
deletes a precondition of the other, and are effect-interfering
otherwise. It is then sufficient to branch also on a second
class of threats; mutex threats: pairs of effect-interfering
actions a and a′ such that neither Tmin(a) + dur(a) ≤
Tmin(a′) nor Tmin(a′) + dur(a′) ≤ Tmin(a) hold in σ.
Such flaws are solved by adding to OrdT one of the tempo-
ral constraints T (a)+dur(a) ≤ T (a′) or T (a′)+dur(a′) ≤
T (a).

Modern Constraint-Based Interval (CBI) planners (Jons-
son et al. 2000; Smith, Frank, & Jonsson 2000) are based on
similar ideas and are able to deal with more expressive lan-
guages. Yet, as in standard POCL and Dynamic CSP plan-
ners (Joslin & Pollack 1996), the following performance
problem remains: pruning partial plans whose STP network
is not consistent does not suffice to match the performance
of modern planners. For this, more powerful representations
and inference methods for predicting that all STP networks
in the way to the goal will become inconsistent are needed.

A Constraint Programming Formulation
The performance limitation of current constraint-based
POCL planners arises mainly from their limitation to rea-
son about the actions in the current plan only. Most often,
nothing is inferred about an action a until the action is con-
sidered for inclusion in the plan. Still, as we have seen in
Section 2, a lot can be inferred about such actions including
restrictions about their possible starting times and support-
ers. Some of this information can actually be inferred before
any commitments are made; the lower bounds on the starting
times of all actions as computed in Graphplan being one ex-
ample. Yet this is not enough; if similar performance and op-
timality guarantees are to be achieved in the POCL setting,
inferences that take advantage of the commitments made are
also necessary. In order to perform such inferences, the rep-
resentation of the space of possible commitments is crucial.
We thus make two changes in relation to the temporal POCL
planner above. First, we introduce and reason with variables

that involve all the actions a in the domain; not only those
present in the current plan. And second, for all such actions
we introduce variables S(p, a) and T (p, a) that stand for the
possibly undetermined action supporting precondition p of
a and the possibly undetermined starting time of such an ac-
tion, and perform limited but useful forms of reasoning over
such variables. A causal link a′[p]a thus becomes a con-
straint S(p, a) = a′, which in turn implies that the supporter
a′ of precondition p of a starts at time T (p, a) = T (a′).1

An important assumption that we make is that no (ground)
action a in the domain occurs more than once in the plan.
This canonicity assumption allows us to collapse the notions
of action and action occurrence, leading to a number of sim-
plifications. At the same time, it is a meaningful extension
of the more restrictive assumption often found in schedul-
ing research where every action in the domain must occur
exactly once. From a practical point of view, most current
benchmarks, whether temporal or not, admit optimal solu-
tions of this kind, as we will see below. Later on we will
discuss ways for relaxing this restriction.

The basic CP formulation of the CPT planner is given
in four parts: preprocessing, variables, constraints, and
branching. After the preprocessing, the variables are cre-
ated and the constraints are asserted and propagated. If an
inconsistency is found, no valid plan for the problem exists.
Otherwise, the constraint T (End) = B for the bound B set
to the earliest possible starting time of the action End (i.e.;
B = Tmin(End)) is asserted and propagated. The branch-
ing scheme then takes over and if no solution is found, the
process restarts by retracting the constraint T (End) = B
and replacing it with T (End) = B + 1, and so on.

Preprocessing
In the preprocessing phase, the planner computes the heuris-
tic values h2

T (a) and h2
T ({p, q}) for each action a ∈ O and

each atom pair {p, q} as in (Haslum & Geffner 2001). The
values provide lower bounds on the times to achieve the pre-
conditions of a and the pair of atoms p, q, from the initial
situation I . In addition, we identify the (structural) mutexes
as the pairs of atoms p, q for which h2

T ({p, q}) = ∞. We
then say that an action a e-deletes an atom p when either a
deletes p, a adds an atom q such that q and p are mutex, or a
precondition r of a is mutex with p and a does not add p (in
all cases p is false after doing a; see (Nguyen & Kambham-
pati 2001)).

In addition, the simpler heuristic h1
T is used for defining

distances between actions (Van Beek & Chen 1999) as fol-
lows. For each action a ∈ O, we compute the h1

T heuristic
from an initial situation Ia that includes all facts except those
that are e-deleted by a. We then set the distances dist(a, a′)
to the resulting h1

T (a′) values. Clearly, these distances en-
code lower bounds on the slack that can be inserted between
the completion of a and the start of a′ in any legal plan in

1Propositional ‘causal’ encodings of Strips planning problems
have been formulated and analyzed in (Kautz, McAllester, & Sel-
man 1996; Mali & Kambhampati 1999). Our encodings share a
number of features with these formulations but are more compact
due to the use of a temporal representation.

which a′ follows a.
The distances dist(a,End) and dist(a, Start) are de-

fined in a slightly different way. The former are obtained by
running a shortest-path algorithm over a ‘relevance graph’
where the nodes are the actions a ∈ O and the action End
is the source node. An edge a → a′ in this graph means that
a′ is ‘relevant’ to a (namely that it adds a precondition p of
a) and its cost is given by δ(a′, a) = dur(a′) + dist(a′, a).
The distances dist(a,End) are then set to the cost of the
shortest-path connecting End to a in this graph. The dis-
tances dist(Start, a) are set to h2

T (a).

Variables and Domains
The state σ of the planner is given by a collection of vari-
ables, domains, and constraints. As emphasized above, the
variables are defined for each action a ∈ O and not only
for the actions in the current plan. Moreover, variables are
created for each precondition p of each action a as indicated
below. The domain of variable X is indicated by D[X] or
simply as X :: [Xmin, Xmax] if X is a numerical variable.
The variables, their initial domains, and their meanings are:

• T (a) :: [0,∞] encodes the starting time of each action a,
with T (Start) = 0.

• S(p, a) encodes the support of precondition p of action a
with initial domain D[S(p, a)] = O(p) where O(p) is the
set of actions in O that add p

• T (p, a) :: [0,∞] encodes the starting time of S(p, a)

• InP lan(a) :: [0, 1] indicates the presence of a in the plan;
InP lan(Start) = InP lan(End) = 1 (true)

In addition, the set of actions in the current plan is kept in
the variable Steps; i.e., Steps = {a | InP lan(a) = 1}.
Variables T (a), S(p, a), and T (p, a) associated with actions
a which are not yet in the plan are conditional in the follow-
ing sense: these variables and their domains are meaningful
only under the assumption that they will be part of the plan.
In order to ensure this interpretation, some care needs to be
taken in the propagation of constraints as explained below.

Constraints
The constraints correspond basically to disjunctions, rules,
and temporal constraints, or their combination. Disjunctions
are interpreted constructively: when one disjunct is false,
the other is enforced. Similarly for rules: when the an-
tecedent constraint holds, the consequent is enforced. The
conditions under which a constraint is regarded as (neces-
sarily) true or false in a state are determined by the nature
of the constraint and the domains of the variables; roughly,
a constraint is true (false) if it is true (false) for any possible
assignment given the domains. E.g., T (a) < T (a′) is true
if the variable domains are such that Tmax(a) < Tmin(a′)
holds, is false if Tmin(a) ≥ Tmax(a′) holds, and otherwise
is undetermined.2 Temporal constraints are propagated by

2Similarly, T (a) = T (a′) is true if Tmin(a) = Tmax(a) =
Tmin(a′) = Tmax(a′) holds, and is false if either T (a) < T (a′)
or T (a) > T (a′) holds. The conditions for enumerated variables
like S(p, a) are similar; S(p, a) = a′ is true if D[S(p, a)] = {a′}

bounds consistency as indicated above. In constraints in-
volving terms of the form opa′∈D[S(p,a)], information prop-
agates from S(p, a) but not into S(p, a); propagation into
such variables is achieved by explicit rules with variables
S(p, a) on the right hand side. The constraints apply to all
actions a ∈ O and all p ∈ pre(a); we use δ(a, a′) to stand
for dur(a) + dist(a, a′).

• Bounds: For all a ∈ O, T (Start) + dist(Start, a) ≤
T (a) and T (a) + dist(a,End) ≤ T (End).

• Preconditions: Supporter a′ of precondition p of a must
precede a by an amount that depends on δ(a′, a):

T (a) ≥ T (p, a) + min
a′∈[D(S(p,a)]

δ(a′, a)

• Causal Link Constraints: for all a ∈ O, p ∈ pre(a) and
a′ that e-deletes p, a′ precedes S(p, a) or follows a

T (a′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′) ≤ T (p, a)

∨ T (a) + dur(a) + dist(a, a′) ≤ T (a′)

• Mutex Constraints: For effect-interfering a and a′

T (a) + δ(a, a′) ≤ T (a′) ∨ T (a′) + δ(a′, a) ≤ T (a)

• Support Constraints: T (p, a) and S(p, a) related by

S(p, a) = a′ → T (p, a) = T (a′)

min
a′∈D[S(p,a)]

T (a′) ≤ T (p, a) ≤ max
a′∈D[S(p,a)]

T (a′)

T (p, a) 6= T (a′) → S(p, a) 6= a′

T (a′) + δ(a′, a) > T (a) → S(p, a) 6= a′

The constraints involving the variables S(p, a) and T (p, a)
are lifted in the sense that they apply to all possible sup-
porters a′ of precondition p of a. As mentioned above, the
variables T (a), T (p, a), and S(p, a) are conditional when
InP lan(a) = 1 is neither true or false. They become in-
plan variables when InP lan(a) = 1 becomes true, and
out-plan variables when InP lan(a) = 1 becomes false.
Constraints involving in-plan variables only are propagated
as usual, and furthermore, an empty domain raises an in-
consistency. Constraints involving an out-plan variable, on
the other hand, are not propagated. Finally, and most im-
portantly, constraints involving conditional variables associ-
ated with the same action a and hence the same assumption
(namely that a will be part of the plan) are propagated but
only in the direction of the conditional variables. This en-
sures that the domain of a conditional variable depends only
on the assumption that that particular variable is in the plan
and on no other assumption. As a result, if the domain of
a conditional variable associated with an action a becomes
empty, it is inferred that the action a cannot be part of the

and is false if a′ 6∈ D[S(p, a)]. In all cases, the constraint ¬C is
true (false) if C is false (true). In CP, it is common to say that a
constraint is entailed in a state rather than true (Hentenryck, Simo-
nis, & Dincbas 1992). We also note that T (a) < T (a′) is true in
our modified CP engine when a′ = End, regardless of the domain
of T (a).

current plan and not that the current partial plan is incon-
sistent. More precisely, InP lan(a) is set to 0 if the domain
of a conditional variable associated with a becomes empty,
and in such case, the action a is removed from the domain
of all support variables S(p, a′) such that a adds p. On the
other hand, when S(p, a′) = a holds for some action a′ in
the plan, InP lan(a) is automatically set to 1. Conditional
variables of this type in constraint programming have been
considered in (Focacci & Milano 2001).

Branching
The definition of ‘flaws’ parallels the one considered above
for temporal POCL planning:
• Support Threats: a′ threats a support S(p, a) when both

actions a and a′ are in the current plan, a′ e-deletes p, and
neither Tmin(a′) + dur(a′) ≤ Tmin(p, a) nor Tmin(a) +
dur(a) ≤ Tmin(a′) hold.

• Open Conditions: S(p, a) is an open condition when
|D[S(p, a)]| > 1 holds for an action a in the plan.

• Mutex Threats: a and a′ constitute a mutex threat
when both actions are in the plan, they are effect-
interfering, and neither Tmin(a) + dur(a) ≤ Tmin(a′)
nor Tmin(a′) + dur(a′) ≤ Tmin(a) hold (two actions are
effect-interfering in CPT when one deletes a positive ef-
fect of the other, and neither one e-deletes a precondition
of the other).
Upon selecting a flaw in a state σ, a binary split is cre-

ated which we denote as [C1;C2] where C1 and C2 are con-
straints. The first child σ1 of σ is obtained by adding C1 to
σ and closing the result under the propagation rules; the sec-
ond child σ2 of σ is generated by adding the constraint C2

instead, when the search beneath σ1 fails. The binary splits
generated for each type of flaw are as follows:
• A Support Threat 〈a′, S(p, a)〉 generates the split

[T (a′) + dur(a′) + mina′′∈D[S(p,a)] dist(a′, a′′) ≤
T (p, a); T (a) + δ(a, a′) ≤ T (a′)]

• An Open Condition S(p, a) generates the split
[S(p, a) = a′;S(p, a) 6= a′] for a selected a′

• A Mutex Threat 〈a, a′〉 generates the split [T (a) +
δ(a, a′) ≤ T (a′);T (a′) + δ(a′, a) ≤ T (a)]

The branching scheme is sound and complete. Soundness
follows from the validity of the plan P obtained from a con-
sistent state σ with no flaws by scheduling the in-plan ac-
tions ai at the earliest possible times ti = Tmin(ai). Com-
pleteness in turn follows from the soundness of the prop-
agation rules and the validity of the disjunctions C1 ∨ C2

associated with the binary splits [C1;C2].

Branching heuristics In each step, the selected flaw is a
Support Threat (ST) if one exist, else an Open Condition
(OC) if one exists, else a Mutex Threat (MT). The heuristic
for selecting among the existing flaws is the following:
• Support Threats 〈a′, S(p, a)〉 with minimum slack

max[slack(a′ ≺ S(p, a)), slack(a ≺ a′)] selected
first (Smith & Cheng 1993), where slack(a ≺ a′) is
Tmax(a′)−(Tmin(a)+δ(a, a′)) and slack(a′ ≺ S(p, a))
is Tmax(p, a) − (Tmin(a′) + mina′∈[D(S(p,a)] δ(a

′, a))

• Open conditions S(p, a) selected latest first; i.e. max-
imizing the expression mina′∈D[S(p,a)] Tmin(a′), split-
ting on the ‘arg min’ action a′ (i.e., creating the split
[S(p, a) = a′;S(p, a) 6= a′].

• Mutex Threats 〈a, a′〉 selected as they are encountered

The heuristics for STs and OCs have a significant influ-
ence on performance but not so the heuristic for MTs (most
often no MTs are left after removal of STs and OCs).

Mutex Sets
The code incorporates an enhancement that helps in some
domains without representing a significant overhead in oth-
ers. It has to do with the idea of mutex sets: sets M of
actions in the plan, (not necessarily pairs) such that any two
actions in M are interfering. Since such actions cannot over-
lap, the time window associated with the set of actions M ,
maxa∈M (Tmax(a)+dur(a))−mina∈M Tmin(a), must pro-
vide enough ‘room’ for scheduling all actions in a ∈ M in
sequence. Taking into account the pre-computed distances,
a lower bound ∆(M) for the time needed for scheduling all
actions in M is given by
∑

a∈M

[dur(a)+ min
a′∈M |a′ 6=a

dist(a, a′)]− max
{a,a′}⊆M

dist(a, a′)

which expresses a lower bound on the time needed to sched-
ule all the actions in M , one before another, except for the
action scheduled last. With these lower bounds, we define
the Mutex Set constraint as

max
a′∈M

T (a′) − min
a′′∈M

T (a′′) ≥ ∆(M)

and apply it to some mutex sets M identified from the ac-
tions Steps in the plan in a greedy fashion, as described be-
low (computing the largest mutex sets in the plan seems too
expensive). The idea of mutex sets is adapted from similar
concepts used in constraint-based scheduling such as edge-
finding; see (Carlier & Pinson 1989; Baptiste, Pape, & Nui-
jten 2001; Laborie 2003).

• Global Mutex Sets Mi are built greedily as new actions
are added to Steps. Initially a single mutex set M0 with
the Start and End actions is defined; then any time an
action a is added to Steps, a is added to each existing
mutex set Mi, i = 0, . . . , k such that a is interfering with
each action a′ in Mi, and a new mutex set Mk+1 is created
with a only when a cannot be added to any existing mutex
set. The mutex set constraint is enforced for each such set
Mi.

• Causal Link Mutex Sets M− and M+ are defined also
for each ‘causal link’ S(p, a)[p]a in the plan. Initially,
these sets are empty, then when a new action a′ is added
to the plan that e-deletes p and cannot follow a (resp. can-
not precede S(p, a)), a is added to M− (resp. to M+) if
a is interfering with each action in M− (resp. in M+).
For these mutex sets M+ and M−, the following CL Mu-
tex Set constraint is enforced, which unlike the mutex set
constraint above, not only detects inconsistencies, but also

prunes the bounds of the temporal variables T (p, a) and
T (a):

min
a′∈M−

T (a′) + ∆(M−) ≤ T (p, a) ∧

T (a) + dur(a) ≤ max
a′∈M+

[T (a′) + dur(a′)] − ∆(M+)

In addition, for all a′ in the plan that e-delete p that can
follow S(p, a) and precede a, we evaluate the consistency
of the mutex set M− ∪ {a′} (resp. M+ ∪ {a′}) if a′ is
interfering with each action in M− (resp. M+). If the set
is inconsistent (i.e., it violates the mutex constraint), then
it is inferred that a′ must follow a (resp. must precede
S(p, a)).

Implementation
The CPT planner has been implemented using the Choco CP
library (Laburthe 2000) that operates on top of the Claire
programming language (Caseau, Josset, & Laburthe 1999)
that compiles into C++. In early stages of the implemen-
tation, we wrote the constraints in Choco in a way that re-
sembled the formulation above, yet we progressively moved
to an implementation based on propagation rules that avoids
unnecessary checks and triggerings, and speeds up the prop-
agations. The current implementation is a collection of rules
which are triggered by the event mechanism of Choco. Up-
dates on lower bounds, upper bounds, and domain values
are recorded in event queues, where similar events are ‘col-
lapsed’; e.g., if the lower bound of a variable X is increased
successively from 1 to 2, and then from 2 to 3 before the first
event is dequeued, only one event is stored, stating that the
lower bound of X is increased from 1 to 3. When an event
is dequeued, the relevant rules are triggered, performing the
appropriate propagations (updates on variables constrained
by the modified variables, . . .). The only constraints not re-
implemented in terms of rules are the dynamic constraints;
namely those that are posted as a result of branching. We
modified the Choco engine so that these constraints can be
backtracked upon inconsistencies, and also for enforcing the
semantics of conditional variables. As stated above, for the
latter an empty domain does not raise an inconsistency but
forces an action out of the plan. On temporal variables, the
conditional behavior is obtained by handling those variables
ourselves; support conditional variables, on the other hand,
are treated as normal CP variables with a dummy action α
added to their domains, with D[S(p, a)] = {α} meaning
that p cannot be supported by any action. The InP lan(a)
variables are not implemented as CP variables either; the in-
formation about the status of actions in the plan is compiled
in the code of the propagation rules. The code incorporates
optimizations which we lack the space to discuss here like
the use of a larger set of (redundant but effective) ‘threats’
on which to branch. The code will be made available for
download.

Experimental Results
The experiments have been obtained using a Pentium IV
machine running at 1.6Ghz, with 512Mb of RAM, under

Linux. The time limit for each problem is one hour. Ta-
ble 3 compares CPT , Blackbox (with Chaff), IPP, and TP4
over parallel domains, while Table 4 compares CPT and TP4
over temporal domains. These are all optimal planners. The
times in all cases include preprocessing. The parallel do-
mains include blocks and logistic instances from the Black-
box distribution. The rest of the instances are from the 3rd
Int. Planning Competition (Long & Fox 2003a). The tables
show that CPT runtimes are close to Blackbox over the par-
allel domains, and can even solve problems like bw-large.c
and satellite11 that Blackbox cannot solve (the good perfor-
mance of CPT in blocks owes a lot to the use of mutex sets).
CPT is sometimes slower than IPP but can solve many more
problems while it clearly dominates TP4 over all parallel and
temporal domains, and expands much fewer nodes (these are
the numbers in parenthesis). As discussed in (Haslum &
Geffner 2001), the problem of state-based temporal planners
such as TP4 is their branching factor which may be expo-
nential in the number of primitive actions in the domain. In
CPT, the branching factor is two, and after every branching
decision, a powerful pruning mechanism is applied.

As Table 2 shows, CPT seems to dominate also LPGP, a
recent temporal planner that optimizes the number of steps
in the plan rather than the makespan (Long & Fox 2003b).
We only consider the instances reported for LPGP on a sim-
ilar machine. The shorter makespans for LPGP in one do-
main (satellite), arise from slight differences in the seman-
tics (namely, LPGP follows the PDDL2.1 semantics (Fox
& Long 2003) where interfering actions may overlap, e.g.,
when preconditions do not have to be preserved throughout
the execution of the action).

Discussion
We have developed a domain-independent optimal POCL
temporal planner based on constraint programming that inte-
grates existing lower bounds with novel representations and
propagation rules that manage to prune the search space con-
siderably. The experiments show that the resulting planner
is faster than current optimal temporal planners and com-
petitive with the best parallel planners. The formulation ex-
ploits the canonicity restriction that no (ground) action a in
the domain occurs more than once in the plan. This restric-
tion allows us to collapse the notions of action and action
occurrence, leading to a number of simplifications. We are
currently working on a formulation that removes this restric-
tion. The formulation is based on distinguishing action types
from action tokens. Plans contain only action tokens which
are all instances of the fixed set of action types defined by
the initial set of operators. Action tokens are created dy-
namically from action types as in POCL planning; namely,
as new action instances that support a selected open condi-
tion. In this setting, however, the creation of new instances
takes the form of a ‘cloning’ operation: for the new instance
a′ of type a, the variables T (a′), S(p, a′), and T (p, a′) are
created as fresh copies of the variables T (a), S(p, a), and
T (p, a) with their corresponding domains, where p is a pre-
condition of a. In addition, the new token a′ is added as an
independent action to all support domains that include the
action type a. The resulting scheme can actually be seen as

Strips CPU time (sec.) Makespan
problems CPT BBOX IPP TP4
bw.12step 0.21 0.26 0.03 0.08 12
bw.large.a 0.44 1.13 0.07 0.08 12
bw.large.b 1.75 17.94 2.33 - 18
bw.large.c 231.22 - - - 28
rocket.a 0.28 0.38 7.97 44.20 7
rocket.b 0.24 0.45 11.95 31.83 7

log.a 0.70 0.47 781.13 - 11
log.b 0.90 0.91 2099.89 - 13
log.c 1.43 1.46 - - 13
log.d 29.03 3.73 - - 14
zeno7 0.84 0.67 0.05 1.76 6
zeno8 5.39 1.59 0.22 166.22 5
zeno9 6.41 2.54 0.68 - 6
zeno10 6.84 4.01 221.32 - 6
zeno11 14.90 5.60 31.06 - 6
zeno12 16.39 11.10 - - 6
zeno13 45.97 11.42 - - 7
driver7 0.24 0.24 0.15 22.98 6
driver8 0.30 0.40 3.53 33.59 7
driver9 1.46 1.55 11.26 2979.66 10

driver10 1.02 1.00 17.06 1823.16 7
driver11 4.33 2.67 2.26 1259.06 9
satellite3 0.12 0.26 0.03 0.08 6
satellite4 0.40 1.39 7.28 755.08 10
satellite5 0.99 1.50 145.67 - 7
satellite6 0.56 1.34 90.46 - 8
satellite7 1.55 1.80 1039.23 - 6
satellite8 101.18 235.13 - - 8
satellite9 8.52 4.68 - - 6
satellite10 185.90 42.35 - - 8
satellite11 22.51 - - - 8

Table 3: Results for parallel domains

providing a lazy implementation of a planning domain with
an infinite number of action instances, with the action types
summarizing the domains of the action instances that have
not been yet used in the plan. For the parallel domains, the
performance degradation is moderate (runtimes do not ap-
pear to increase in more than 15% over the instances consid-
ered in this paper), while for temporal domains, it is greater
(although the resulting planner still performs much better
than current optimal planners). We are still tuning the non-
canonical planner and plan to report the relevant details else-
where.

References
Baptiste, P.; Pape, C. L.; and Nuijten, W. 2001. Constraint-Based
Scheduling: Applying Constraint Programming to Scheduling
Problems. Kluwer.
Blum, A., and Furst, M. 1995. Fast planning through planning
graph analysis. In Proceedings of IJCAI-95, 1636–1642.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and
fast action selection mechanism for planning. In Proceedings of
AAAI-97, 714–719. MIT Press.
Carlier, J., and Pinson, E. 1989. An algorithm for solving the job
shop scheduling problem. Management Science 35(2).
Caseau, Y.; Josset, F. X.; and Laburthe, F. 1999. Claire: Com-

zeno4 zeno5 zeno6 driver1 rover1 rover2 rover3 rover4 satellite1 satellite2 satellite3
CPT 4.59 (522) 3.83 (400) 1.78 (323) 0.06 (91) 0.12 (53) 0.07 (43) 0.11 (53) 0.09 (45) 0.05 (46) 0.95 (70) 0.20 (34)

LPGP 65.32 (740) 43.83 (583) 57.61 (350) 0.33 (91) 0.30 (55) 0.24 (44) 0.44 (58) 0.40 (47) 0.17 (41) 24.15 (65) 62.22 (29)

Table 2: Comparison CPT vs. LPGP (CPU time in sec., makespan in parenthesis)

Temporal CPU time (sec.) (+number of states) Makespan
problems CPT TP4

zeno1 0.06 (2) 0.05 (4) 173
zeno2 0.95 (892) 1.23 (17124) 592
zeno3 0.50 (4) 0.05 (618) 280
zeno4 4.59 (2233) - 522
zeno5 3.83 (124) 34.78 (595988) 400
zeno6 1.78 (54) 6.03 (116715) 323
zeno7 77.58 (45187) - 665
zeno8 265.93 (78044) - 522
zeno9 1522.24 (432210) - 522
zeno10 82.62 (12692) - 453
zeno11 116.15 (874) - 423
driver1 0.06 (6) 0.05 (49) 91
driver2 734.98 (724327) 458.19 (17444608) 92
driver3 0.12 (11) 0.05 (621) 40
driver4 91.32 (54350) - 52
driver5 0.40 (152) - 51
driver6 111.10 (59702) - 52
driver7 0.59 (103) 20.79 (323963) 40
driver8 - - -
driver9 493.91 (137716) - 92

driver10 8.75 (1517) - 38
satellite1 0.05 (5) 0.05 (80) 46
satellite2 0.95 (1435) 8.45 (712294) 70
satellite3 0.20 (26) 0.05 (21143) 34
satellite4 4.36 (5257) - 58
satellite5 2.32 (1191) - 36
satellite6 0.82 (47) - 46
satellite7 2.36 (325) - 34
satellite8 3324.92 (827408) - 46
satellite9 8.84 (516) - 34

satellite10 2160.24 (261474) - 43

Table 4: Results for temporal domains

bining sets, search and rules to better express algorithms. In Pro-
ceedings of the Int. Conf. on Logic Programming.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49:61–95.

Do, M. B., and Kambhampati, S. 2000. Solving planning-graph
by compiling it into CSP. In Proc. AIPS-00, 82–91.

Focacci, F., and Milano, M. 2001. Connections and integrations
of dynamic programming and constraint programming. In Proc.
of the Int. Workshop on Integration of AI and OR techniques (CP-
AI-OR’01).

Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. JAIR 20.

Geffner, H. 2001. Planning as branch and bound and its rela-
tion to constraint-based approaches. Technical report, Universi-
dad Simón Bolı́var. At www.tecn.upf.es/∼hgeffner.

Haslum, P., and Geffner, H. 2000. Admissible heuristics for opti-
mal planning. In Proc. AIPS-2000, 70–82.

Haslum, P., and Geffner, H. 2001. Heuristic planning with time
and resources. In Proc. ECP-01, 121–132.
Hentenryck, P. V.; Simonis, H.; and Dincbas, M. 1992. Con-
straint satisfaction using constraint logic programming. Artificial
Intelligence 58(1–3):113–159.
Jonsson, A.; Morris, P.; Muscettola, N.; and Rajan, K. 2000.
Planning in interplanetary space. In Proc. AIPS-2000, 177–186.
Joslin, D., and Pollack, M. E. 1996. Is ”early commitment” in
plan generation ever a good idea? In Proc. AAAI-96, 1188–1193.
Kambhampati, S.; Knoblock, C.; and Yang, Q. 1995. Planning as
refinement search. AI 76(1-2):167–238.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and Graph-
based planning. Proc. IJCAI-99, 318–327.
Kautz, H.; McAllester, D.; and Selman, B. 1996. Encoding plans
in propositional logic. In Proc. KR’96, 374–384.
Koehler, J.; Nebel, B.; Hoffman, J.; and Dimopoulos, Y. 1997.
Extending planning graphs to an ADL subset. In Proc. ECP-97.
Lect. Notes in AI 1348, 273–285.
Laborie, P., and Ghallab, M. 1995. Planning with sharable re-
sources constraints. Proc. IJCAI-95, 1643–1649.
Laborie, P. 2003. Algorithms for propagating resource constraints
in AI planning and scheduling. AI 143:151–188.
Laburthe, F. 2000. Choco: implementing a CP kernel. In Pro-
ceedings CP-00, Lecture Notes in CS, Vol 1894. Springer.
Lhomme, O. 1993. Consistency techniques for numeric CSPs. In
Proceedings IJCAI-93, 232–238. Morgan Kaufmann.
Long, D., and Fox, M. 2003a. The 3rd international planning
competition: Results and analysis. JAIR 20:1–59.
Long, D., and Fox, M. 2003b. Exploiting a graphplan framework
in temporal planning. In Proceedings ICAPS 2003, 52–61.
Mali, A., and Kambhampati, S. 1999. On the utility of plan-space
(causal) encodings. In Proceedings AAAI-99, 557–563.
McDermott, D. 1996. A heuristic estimator for means-ends anal-
ysis in planning. In Proc. AIPS-96.
Nguyen, X. L., and Kambhampati, S. 2001. Reviving partial
order planning. In Proc. IJCAI-01.
Palacios, H., and Geffner, H. 2002. Planning as branch and
bound: A constraint programming implementation. In Proc.
XXVIII Conf. Latinoamericana de Informática, 239–251.
Smith, S., and Cheng, C. 1993. Slack-based heuristics for the
constraint satisfaction scheduling. In Proc. AAAI-93, 139–144.
Smith, D., and Weld, D. 1999. Temporal planning with mutual
exclusion reasoning. In Proc. IJCAI-99, 326–337.
Smith, D.; Frank, J.; and Jonsson, A. 2000. Bridging the gap
between planning and scheduling. Know. Eng. Review 15(1).
Van Beek, P., and Chen, X. 1999. CPlan: a constraint program-
ming approach to planning. In Proc. AAAI-99, 585–590.
Weld, D. S. 1994. An introduction to least commitment planning.
AI Magazine 15(4):27–61.
Younes, B. L. S., and Simmons, R. G. 2003. VHPOP: Versatile
heuristic partial order planner. JAIR 20:405–430.

