The Model-based Approach to Autonomous Behavior: Prospects and Challenges

Hector Geffner ICREA & Universitat Pompeu Fabra Barcelona, Spain 12/2010

H. Geffner, The Model-based Approach to Autonomous Behavior, AI*IA 2010, 12/2010

Plan for the Talk

- Artificial Intelligence
 - brief AI history
 AI models and solvers
- Planning
 - ▶ what is planning?
 - what has been achieved?
 - heuristics and transformations
- Wrap up
 - challenges and opportunities

Darmouth 1956

"The proposal (for the meeting) is to proceed on the basis of the conjecture that every aspect of . . . intelligence can in principle be so precisely described that a machine can be made to simulate it"

Computers and Thought 1963

Contents

PREFACE	v
Acknowledgments	ix
Part 1: ARTIFICIAL INTELLIGENCE	
Introduction	1
COMPUTING MACHINERY AND INTELLIGENCE A. M. Turing Section 2. Machines That Play Games	11
Allen Newell, J. C. Shaw, and H. A. Simon Some studies in Machine Learning using the game of	39
CHECKERS A. L. Samuel	71
EMPIRICAL EXPLORATIONS WITH THE LOGIC THEORY MACHINE: A CASE STUDY IN HEURISTICS Allen Newell, J. C. Shaw,	
and H. A. Simon	109
H. Gelernter	134
D. W. Loveland	153
fection 4. Two Important Applications	
Fred M. Tonge A HEURISTIC PROGRAM THAT SOLVES SYMBOLIC INTEGRATION	168
PROBLEMS IN FRESHMAN CALCULUS James R. Slagle .	191
BABEBALL: AN AUTOMATIC QUESTION ANSWERER BATT F, Green, Jr., Alice K, Wolf, Carol Chomsky, and	
Kenneth Laughery	207
UNDERSTAND NATURAL LANGUAGE Robert K. Lindsay	217
PATTERN RECOGNITION BY MACHINE Oliver G. Selfridge and Ulric Neisser A PATTERN-RECOGNITION PROGRAM THAT GENERATES, EVAL- UATER, AND ADJUSTS ITS OWN OPERATORS Leonard Uhr	237
and Charles Vossler	251 xiii

An early collection of AI papers and programs for playing chess and checkers, proving theorems in logic and geometry, planning, etc.

Importance of Programs in Early AI Work

In preface of 1963 edition of *Computers and Thought*

We have tried to focus on papers that report results. In this collection, the papers . . . describe actual working computer programs . . . Because of the limited space, we chose to avoid the more speculative . . . pieces.

In preface of 1995 AAAI edition

A critical selection criterion was that the paper had to describe . . . a running computer program . . . All else was talk, philosophy not science . . . (L)ittle has come out of the "talk".

AI, Programming, and AI Programming

Many of the key AI contributions in 60's, 70's, and early 80's had to do with **programming** and the **representation of knowledge** in **programs**:

- Lisp (Functional Programming)
- Prolog (Logic Programming)
- Rule-based Programming

. . .

- Interactive Programming Environments and Lisp Machines
- Frame, Scripts, Semantic Networks
- 'Expert Systems' Shells and Architectures

From Programs to Solvers

 $Problem \Longrightarrow \boxed{Solver} \Longrightarrow Solution$

• **Solvers** are programs that target a specific class of **models**

- Constraint Satisfaction/SAT: find state that satisfies constraints
 Bayesian Networks: find probability over variable given observations
 Planning: find action sequence or policy that produces desired state
 General Game Playing: find best strategy in presence of *n*-actors

- Solvers for these models are **general**; not tailored to specific instances
- Models are all **intractable**, and some extremely powerful (POMDPs)
- Challenge in all cases is **computational**: **how to scale up**
- Methodology is **empirical**: benchmarks and competitions

From Programs to Solvers

 $Problem \Longrightarrow \boxed{Solver} \Longrightarrow Solution$

• **Solvers** are programs that target a specific class of **models**

- Constraint Satisfaction/SAT: find state that satisfies constraints
 Bayesian Networks: find probability over variable given observations
 Planning: find action sequence or policy that produces desired state
 General Game Playing: find best strategy in presence of *n*-actors

- Solvers for these models are **general**; not tailored to specific instances
- Models are all **intractable**, and some extremely powerful (POMDPs)
- Challenge in all cases is **computational**: **how to scale up**
- Methodology is **empirical**: benchmarks and competitions
- Crisp validation; significant progress in recent years

Planners

A **planner** is a **solver over a class of models**; it takes a model description, and automatically computes its solution, which is a **controller**

$$Model \Longrightarrow Planner \Longrightarrow Controller$$

- Models encode initial situation, actions, sensors, and goal
- Many different planning **models**: uncertainty, feedback, costs, ...
- Many types of solutions forms (**controllers**) according to type of feedback

Basic State Model for (Classical) AI Planning

- finite and discrete state space ${\boldsymbol{S}}$
- a known initial state $s_0 \in S$
- a set $S_G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a deterministic state transition function s' = f(a, s) for $a \in A(s)$
- action costs c(a,s) > 0

A solution is a sequence of applicable actions that maps s_0 into S_G It is optimal if it minimizes sum of action costs (e.g., # of steps) The resulting controller is open-loop (no feedback)

Uncertainty but No Feedback: Conformant Planning

- finite and discrete state space ${\cal S}$
- a set of possible initial state $S_0 \in S$
- a set $S_G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a **non-deterministic** transition function $F(a,s) \subseteq S$ for $a \in A(s)$
- action costs c(a, s)

Uncertainty but no sensing; hence controller still open-loop

A **solution** is an **action sequence** that achieves the goal in spite of the uncertainty; i.e. for **any possible initial state** and **any possible transition**

Planning with Sensing

- finite and discrete state space ${\cal S}$
- a set of possible initial state $S_0 \in S$
- a set $S_G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a **non-deterministic** transition function $F(a,s) \subseteq S$ for $a \in A(s)$
- action costs c(a, s)
- a set O of **observation** tokens
- a sensor model O(s) mapping states into observation tokens

Solutions can be expressed in many forms; e.g., **policies** mapping belief states into actions, contingent **trees**, finite-state **controllers**, etc.

Probabilistic version of this model known as **POMDP**: Partially Observable Markov Decision Process

Example

Agent A must reach G, moving deterministically, one cell at a time, in known map

- If **A** knows its location, planning problem is **classical**
- If **A** doesn't know its location, problem is **conformant**
- If **A** doesn't know door location but can sense it, it's **planning with sensing**

Different combinations of uncertainty and feedback: three problems, three models

Model Representation and Planning Languages

$$Model \Longrightarrow \boxed{Planner} \Longrightarrow Controller$$

- Planning models described in compact form in terms of variables
- The states are the assignments of values to the variables
- The **action** effects change the states **locally**:
 - adding values that become true, and
 - deleting values that become false
- Languages like PDDL and PPDDL standard in planning competitions

Status AI Planning

Classical Planning works pretty well

- Large problems solved very fast
- New idea: automatic derivation and use of heuristics

• Model simple but useful

- > Operators not primitive; can be policies themselves
- Fast closed-loop replanning able to cope with uncertainty sometimes
- Beyond Classical Planning: incomplete information, uncertainty, ...
 - ▶ Top-down approach: general **native solvers** for MDPs, POMDPs, etc.
 - Bottom-up approach: transformations and use of classical planners

I'll focus on two techniques: heuristics for classical planning, and transformations for soft goals, plan recognition, and finite-state controllers

Classical Planning Example

- Classical problem: move blocks to transform **Init** into **Goal**
- Problem becomes finding a path in a directed graph
- Difficulty is that graph is **exponential** in number of blocks . . .

Solution using automatically derived heuristics

- Heuristic values h(s) estimate cost from s to goal, and provide sense of direction
- They are **derived automatically** from problem representation
- Plans can be found then with **informed search** (no search in this case)

How are heuristics defined and derived?

- Heuristics h(s) defined in terms of solution cost of simplified problem
- Most common simplification in planning is **delete relaxation**
- In this relaxation, new value of variable doesn't delete old value
- These relaxed problems are easy to solve; low poly-time
- Use of **relaxations** for informing search is old idea in AI (Minsky 63; Pearl 83)
- Yet made it into domain-independent planning in last decade (Bonet & G. 99, Hoffmann 01, Helmert 04)
- Other approaches: SAT (Kautz & Selman), LPG (Gerevini, Serina, Saetti),

Transformations: Soft Goals (Rewards)

- Soft goals as opposed to hard goals are to be achieved if worth the costs
- Utility of plan is utility of soft goals achieved minus plan cost:

$$u(\pi) = \sum_{\pi \models p} u(p) \quad - \quad \sum_{a \in \pi} c(a)$$

- **Best plan** above is to go right to B and C (from I)
- 2008 Int. Planning Competition featured soft goal planning track (net-benefit)

Soft Goal Planning with a Classical Planner

Yet soft goals can be easily **compiled away** (Keyder & G. 07,09)

• For each soft goal p, create **new hard goal** p' initially false, and **two new actions**:

 \triangleright collect(p) with precondition p, effect p' and **cost** 0, and

- ▷ forgo(p) with an empty precondition, effect p' and **cost** u(p)
- Plans π maximize $u(\pi)$ iff minimize $c(\pi) = \sum_{a \in \pi} c(a)$ in translation
- Classical planners over translation beat native net-benefit planners in competition

Transformations: Plan Recognition

- Plan recognition is planning 'in reverse'
- Task is to find goal G from partially observed action sequence O
- Agent is moving from I to one of the goals A, B, C, D, ...
- How to predict where is he going?

Inferring Goal Probabilities from Plan Costs

- Why initially A more likely than F; i.e. P(A|O) > P(F|O)?
- Bayes rule says $P(G|O) = \alpha P(O|G)P(G)$ for possible goals G

Claim:

- ▷ P(O|G) decreases monotonically with **difference** $c(G,\overline{O}) c(G,O)$, where $c(G,O)/c(G,\overline{O})$ are **costs** of achieving *G* while complying/not complying with *O*
- These costs can be computed with a classical planner from suitable translation

Probabilistic Plan Recognition using a Classical Planner

• Goal posterior probabilities P(G|O) obtained from Bayes Rule and likelihoods

$$P(O|G) = sigmoid\{\beta [c(G,\overline{O}) - c(G,O)]\}$$

- Costs c(G, O) and $c(G, \overline{O})$ computed with a classical planner over translation
- **Sigmoid function** follows from assuming probability of plan decays exponentially with cost (soft rationality assumption; Ramirez and G. 2009, 2010)

Transformations: Finite State Controllers

• Starting in A, move to B and back to A; marks A and B observable.

• This **finite-state controller** solves the problem

- FSC is **compact** and **general**: can add noise, vary distance, etc.
- Heavily used in practice, e.g. video-games and robotics, but written by hand

Derivation of Finite State Controllers Using Planners

- Finite state controllers (FSCs) derived using two **transformations**:
 - ▶ Planning problem × Possible FSCs → conformant problem
 - ▷ Conformant problem → classical problem

- Example: move 'eye' (circle) one cell at a time til green block found
- Observables: Whether cell 'seen' contains a green block (G), non-green block (B), or neither (C); and whether on table (T) or not (-)
- Derived controller is compact and general, and applies to any number of blocks and any configuration (Bonet, Palacios, G. 2009)

Wrap up . . .

H. Geffner, The Model-based Approach to Autonomous Behavior, AI*IA 2010, 12/2010

Planning and Autonomous Behavior

- In **planning**, autonomous behavior **derived** automatically from **model**
- Two other approaches to **autonomous behavior** are:
 - programming-based: behavior is hardwired by programmer
 learning-based: behavior is learned from experience
- The **three approaches** compatible and even complementary (e.g., model-based reinforcement learning)
- Elements like heuristic or value functions often appear in them all, e.g.
 - Evaluation functions hardwired in Chess
 - Valuations functions learned from experience in reinforcement learning
 - Heuristic functions **derived** from relaxed models in planning

Challenges and Opportunities

• Technical Challenges

- **Scaling up** further: classical, MDP, POMDP, multi-agent planning
- Hierarchies: what to abstract away and when

• Applications

- ▷ in settings where **autonomy** required; e.g. aerospace
- video-games as future 'killer application' of planning?

Lessons for Cognitive Science

- ▷ simple tasks are hard for general solver if structure not exploited
- automatic derivation of heuristics can provide model for generation of quick but global appraisals

Summary

- Shift in AI since 80's from programs to **solvers**
- Scope of solvers defined by **mathematical models**
- All these models **intractable**; the challenge is to **scale up**
- Planning models come in many forms: uncertainty, feedback, costs, ...
- Key technique in **classical planning** is automatic derivation and use of **heuristics**
- Power of classical planners used for other tasks via transformations
- Promise of planning research is a solid model-based methodology for autonomous agent design and analysis

Unconscious Inference

- We have learned a lot about **effective inference mechanisms** in last 20 years from work on **domain-independent** solvers (SAT, Planning, BNets, etc)
- The problem of AI in the 80's (the 'knowledge-based' approach), was probably lack of **mechanisms** and not only **knowledge**.
- Commonsense based not only on massive amounts of knowledge, but also massive amounts of fast and effective but unconscious inference
- This is clearly true for Vision and NLP, but likely for Everyday Reasoning
- The **unconscious**, not necessarily Freudian, getting renewed attention:
 - ▷ Strangers to Ourselves: the Adaptive Unconscious by T.Wilson (2004)
 - ▶ The New Unconscious, by Ran R. Hassin et al. (Editors) (2004)
 - ▶ Blink: The Power Of Thinking Without Thinking by M. Gladwell (2005)
 - ▷ Gut Feelings: The Intelligence of the Unconscious by Gerd Gigerenzer (2007)
 - Better Than Conscious?: Decision Making, the Human Mind, and Implications For Institutions by C. Engel and W. Singer (2008)

▷ ...

The appraisals h(s) from a cognitive point of view

• they are **opaque** and thus cannot be **conscious**

meaning of symbols in the relaxation is not the normal meaning; e.g., objects can be at many places at the same time as old locations not deleted

• they are **fast and frugal** (linear-time), but unlike the 'fast and frugal heuristics' of Gigerenzer et al. are **general**

they apply to all problems fitting the model (planning problems)

• they play the role of 'gut feelings' or 'emotions' according to De Sousa 87, Damasio 94, Evans 2002, Gigerenzer 2007

providing a guide to action while avoiding infinite regresses in the decision process

Technical Challenges in Planning

• Classical Planning

 \triangleright heuristics h(s) are not **black boxes**; how to exploit **structure** further?

• Probabilistic MDP & POMDP Planning

inference can't be at level of states or belief states but at level of variables

• Multi-agent Planning

should go long way with single-agent planning; game theory seldom needed

• Hierarchical Planning

bow to infer and use hierarchies; what can be abstracted away and when?