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Abstract

A key feature of modern optimal planners such as GRAPHPLAN and BLACKBOX is their ability to
prune large parts of the search space. Previous Partial Order Causal Link (POCL) planners provide
an alternative branching scheme but lacking comparable pruning mechanisms do not perform as
well. In this paper, a domain-independent formulation of temporal planning based on Constraint
Programming is introduced that successfully combines a POCL branching scheme with powerful
and sound pruning rules. The key novelty in the formulation is the ability to reason about supports,
precedences, and causal links involving actions that are not in the plan. Experiments over a wide
range of benchmarks show that the resulting optimal temporal planner is much faster than current
ones and is competitive with the best parallel planners in the special case in which actions have all
the same duration.1
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1. Introduction

The search for optimal plans, like the search for optimal solutions in many in-
tractable combinatorial optimization problems, can be understood along two dimensions:
the branching schemeused for expanding partial solutions, and the pruning schemeused
for discarding them. Most AI planning frameworks can be understood in these terms.
Optimal state-based planners, for example, branch by performing state regression or pro-
gression, and prune by comparing the estimated cost of the partial plans with a given bound
[16]. Optimal SAT and CSP planners, on the other hand, branch by picking a variable and
trying each of its values, pruning branches and domain values that lead to an inconsistency
[10,23]. Pruning is a key operation in both cases: in the first, it is the result of the use
of explicit lower bounds, in the second, of constraint propagation mechanisms and bounds
encoded in the planning graph [3]. This pruning power distinguishes modern planners such
as GRAPHPLAN from its predecessors (whether optimal or not). Indeed the main limitation
of traditional Partial Order Causal Link (POCL) planners [32,46] is that they provide an
alternative branching scheme but no comparable pruning mechanisms. The result is that
dead-ends are discovered late and the size of the search tree explodes much sooner.

Due to its expressive power, however, POCL planning remains an appealing frame-
work for planning, and in particular temporal planning [39]. The challenge is to close
the performance gap that separates POCL planners from modern planners while retaining
the optimality guarantees. In this paper, we undertake this challenge, extending a POCL
temporal planner with powerful and sound pruning mechanisms based on a constraint pro-
gramming formulation that integrates existing lower bounds with propagation rules that
reason with supports, precedences, and causal links in novel ways. The experiments show
that the resulting planner is faster than current optimal temporal planners and is compet-
itive with current parallel planners in the special case in which action durations are all
uniform.

The proposed scheme shows also the appeal of constraint-programming branch-and-
prune formulations for combinatorial optimization problems in which the definition of
explicit and informative lower bound functions is difficult to come by [8,12,43]. Indeed,
informative admissible heuristics for estimating the completion time of partial POCL plans
do not exist, but still we show that suitably chosen constraints and propagation rules may
yield an equivalent pruning power.

The integration of heuristic functions in a POCL planning framework has been pursued
recently in [35,47]. However, no attempt at the generation of optimal plans is made in
these proposals. Here we make use of some of the ideas in [35] like the use of structural
mutexes for extending the notion of threats in POCL planning, and the use of disjunctive
constraints for expressing the possible resolution of threats. Temporal POCL planners fea-
turing constraint propagation mechanisms include IXTET [27], ZENO [37] and RAX [18].
These planners are more expressive than ours (e.g., in the use of resources), but their prun-
ing mechanisms are weaker as they tend to reason about actions in the current partial plan
only. Something similar occurs with formulations of POCL planning as Dynamic CSPs:
CSPs in which the set of variables and constraints is not determined a priori but gets ex-
panded until a failure is detected or a fixed point is reached [19]. In such cases, the number
of potential CSPs to be explored is exponential and for attaining good performance it is
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not possible to reason only within the ‘current’ CSP; it is necessary to reason also over its
possible refinements. This is what GRAPHPLAN does when it builds the planning graph:
it reasons, in a limited way, about all possible plans, and this is also what is achieved in
different ways in our formulation. A previous CP approach to planning over various spe-
cific domains is given in [42]. We borrow some elements from this formulation, like the
use of distancesof various sorts, yet our approach is domain-independent. The broad ideas
on which the current proposal is based have been outlined first in [15], and a preliminary
implementation for parallel planning was reported earlier in [36]. Here this formulation is
extended in a number of ways and a new planner has been implemented over the CHOCO

CP library [28] that operates on top of the CLAIRE programming language [7]. This for-
mulation first appeared in [45] along with a restriction on the types of temporal plans that
could be generated; namely only canonical planswhere every ground action in the domain
was done at mostonce. This restriction is a slight generalization of the situation most com-
monly found in scheduling where every action or task has to be done exactlyonce [2,6].
In this paper, this restriction is removed and all empirical results, except where otherwise
noted, refer to this general, non-canonical temporal planner called still CPT.

2. Preview

In order to illustrate the capabilities of the proposed planner, we consider the class of
planning problems TOWER-n where the task is to build a tower with n blocks b1, . . . ,
bn in that order, with b1 on top, all blocks initially on the table. The single optimal plan
for this problem involves picking each block bi from the table and stacking it on block
bi+1, from i = n− 1 until i = 1. The reasoning mechanisms underlying the proposed plan-
ner, that we call CPT, yield a solution to this problem by pure inference and no searc
This is quite remarkable as the inferences are not trivial and existing optimal planners
do not scale up well over these problems (see Table 1). How does CPT do it? First, it
is inferred that each subgoal on(bi, bi+1) must be achieved by the action stack(bi, bi+1).
This inference is simple as there is a single possible supporter in each case. More in-
terestingly, it is then inferred that these stack operations must be ordered sequentially in
descending order of i; namely, stack(bn−1, bn) first, then stack(bn−2, bn−1), and so on, un-
til stack(b1, b2). This is inferred by reasoning with and resolving the threats affecting the
causal links stack(bi, bi+1)[on(bi, bi+1)]End.2 Moreover, it is also inferred that the first
action in the sequence cannot occur earlier than t = 1, the second action not earlier than
t = 3, the third not earlier than t = 5, and so on, and that the Endaction cannot start earlier
than 2(n − 1), the optimal time bound. This is because as part of the preprocessing CPT

infers that no stack action can be done before t = 1 and that at least a unit of time must
separate the ending of one stack action and the beginning of a new one (all actions are
assumed to have unit durations in the example).

2 We use the notation a[p]a′ for causal links in which action a supports precondition p of a′ , often denoted in

the literature as a
p→a′ .
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All these inferences result from the domain constraints and propagation mechanisms
before even a search bound B on the allowed makespan of the plan is fixed. After the
first bound B = 2(n − 1) is chosen (this is the earliest time at which the action End can
start), further inferences are made. First, the starting times T (ak) of all the actions ai in
the stack sequence above become fixed to their earliest possible starting times resulting in
T (ak) = 1 + 2k, for k = 1, . . . , n − 1, where ak is the kth action in the sequence (namely
ak = stack(bn−k, bn−k+1)). Then the pickup(bn−1), pickup(bn−2), . . . sequence gets added
to the set of actions in the plan at their correct starting times as a result of further rea-
soning that prunes the other possible supports and times. For example, the precondition
clear(bn) for the first action a1 = stack(bn−1, bn) in the sequence can be supported by a
number of unstack(∗, bn) and stack(bn,∗) actions, and by Start. However, since any such
supporter a′ must precede a1 and T (a1) = 1 is already fixed, T (a′) < 1 must hold, leaving
a′ = Start as the only possible supporter (at preprocessing, lower bounds on the starting
time of actions are computed from which it is known that T (a′) < 1 is true only for Start
and pickupactions). For similar reasons, all supporters unstack(bn−1,∗) for the other pre-
condition holding(bn−1) of a1 are pruned, leaving a′

1 = pickup(bn−1) as the only possible
support. The process repeats for the preconditions of a′

1 = pickup(bn−1) with all supporters
a′ different than Startbeing pruned as well.

At this point a number of actions and causal links in the plan have been inferred with
no commitments made except for the bound B . In particular, due to the causal links going
into the actions pickup(bn−1) and stack(bn−1, bn) already fixed at the times t = 0 and
t = 1 respectively, and the fact that all actions a′ whether in the plan or not (except for
these two and Start), threat these causal links but cannot precede both actions, the starting
times T (a′) of such actions a′ are pushed to times t = 2 or higher. The result is that the only
supporters left for the preconditions clear(bn−1) and holding(bn−2) of the next stack action
in the sequence, a2 = stack(bn−2, bn−1), scheduled at time t = 3, end up being the actions
a1 = stack(bn−1, bn) at t = 1 and pickup(bn−2) at time t = 2. To illustrate this, consider
the possible supporters a′ of the precondition clear(bn−1) of a2 differentthan a1 (namely
Start, unstack(∗, bn−1), and stack(bn−1,∗) actions) and the causal link a′[clear(bn−1)]a2.
Clearly, for avoiding the action a1 at time t = 1 from threatening this link, one of the
precedences a1 ≺ a′ or a2 ≺ a1 must hold, but since the latter disjunct is false and a′ ≺ a2

must hold too, we get T (a′) = 2 which is not possible for any such supporter a′. The
supporter pickup(bn−2) for precondition holding(bn−2) of a2 is fixed at time t = 2 in a
similar way, and the process repeats for all other stack actions in the sequence until all
actions have their start times and supporters fixed and no flaw in the plan is left.

Table 1 shows results for CPT in relation to other three modern planners: two optimal
parallel planners, BLACKBOX [23] (with CHAFF [34]) and IPP [24], and an optimal tempo-
ral planner TP4’04 [17]. While most domains are not like TOWER-n and require search,
the domain illustrates the strength of CPT inference mechanisms that often manage to
prune the search space considerably. Over the next few sections we will see how this is
achieved and how cost-effective these mechanisms are in other parallel and temporal do-
mains.



302 V. Vidal, H. Geffner / Artificial Intelligence 170 (2006) 298–335

s

Table 1
Results for TOWER-n domain

CPU time (sec.) Makespan

CPT BLACKBOX SATPLAN IPP TP4

tower02 0.00 0.00 0.13 0.00 0.00 2
tower03 0.00 0.00 0.13 0.00 0.00 4
tower04 0.01 0.02 0.16 0.00 0.01 6
tower05 0.01 0.08 0.32 0.00 0.03 8
tower06 0.02 0.24 3.30 0.00 0.08 10
tower07 0.03 0.75 39.75 0.01 0.32 12
tower08 0.06 1.85 236.02 0.01 1.75 14
tower09 0.08 3.56 665.76 0.04 12.11 16
tower10 0.11 7.07 1229.22 0.19 103.63 18
tower11 0.17 13.92 – 1.10 1096.08 20
tower12 0.26 26.93 – 7.42 – 22
tower13 0.36 52.16 – 61.32 – 24
tower14 0.54 99.15 – 535.45 – 26
tower15 0.80 – – – – 28
tower16 1.10 – – – – 30
tower17 1.47 – – – – 32
tower18 1.89 – – – – 34
tower19 2.46 – – – – 36
tower20 3.41 – – – – 38
tower21 4.40 – – – – 40
tower22 5.69 – – – – 42

3. Background

The proposed scheme for optimal temporal planning combines three elements: lower
bounds automatically extracted from planning problems, a branching scheme that parallels
the one used in POCL planning, and a constraint-directed branch-and-bound search. We
review these topics over the next sections.

3.1. Lower bounds

A recent key development in AI planning is the use of heuristic estimatorsautomati-
cally extracted from problem encodings [5,33]. A parameterized family of lower bounds or
admissible heuristics hm, m = 1,2, . . . , for sequential and parallel planning is formulated
in [16]. The heuristics hm(C) recursively approximate the cost of achieving a set of atom
C from an initial states0 by the cost of achieving the most costly subset of sizem′ � m

in C. For example, for m = 1, the heuristic hm approximates the cost of achieving a set
of atoms by the cost of achieving the most costly atomin the set. For both sequential and
parallel Strips planning, hm for m = 1 is thus given by the equation

h1(C) =



0 if C ⊆ s0, else

mino∈O(p)[1 + h1(pre(o))] if C = {p}, else
1

(1)
maxp∈C h ({p}) if |C| > 1,
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where p is an atom and O(p) stands for the operators o that add p (h1 is also known
as the hmax heuristic; e.g., [4]). The estimators hm for sequential and parallel planning
are equal for m = 1 but become different for higher values of m (recall that cost in the
sequential and parallel settings refer to number of actions and number of time steps in
the plan respectively). Moreover, for m = 2, the parallel estimator hm is equivalent to the
heuristic implicitly computed by GRAPHPLAN in the construction of the planning graph:
namely, hm(A) for a set of atoms A is equivalent to the index of the first propositional layer
that contains the atoms in A without a mutex [16].

From a computational point of view, for a fixed m, the heuristics hm are polynomial
in both the number of actions and the number of atoms in the problem, and they can be
computed by a shortest-path algorithm over a graph in which the nodes are given by the
sets of at most m atoms [16].

The heuristics hm have also been extended to estimate makespan(completion time) in a
temporal setting where actions can be executed concurrently and have different durations
[17]. The equation for m = 1 in that setting becomes

h1
T (C) =




0 if C ⊆ s0, else

mino∈O(p)[dur(o) + h1
T (pre(o))] if C = {p}, else

maxp∈C h1
T ({p}) if |C| > 1,

(2)

where the only change from the parallel estimator h1 is the substitution of the fixed cost 1
by the duration dur(a) of the action a. For m = 2, the temporal estimator h2

T departs from
parallel h2 in other ways; see [17] for details. The measures hm

T (C) are lower bounds on
the time needed to make C true from the initial situation s0. In CPT we use the h2

T heuristic
for initializing the value of certain temporal variables, and enforce a version of the h1

T

heuristic over partial plans through a set of ‘precondition’ constraints.

3.2. Branching

Branching in AI planning is most often discussed in terms of the spacein which the
search for plans is done, with state or directional planners searching in the space of states,
and partial order planners in the space of plans [20,21]. This perspective has been very use-
ful in planning, although it does not always make explicit what these various approaches
to planning have in common, including the more recent SAT and CSP formulations. All
planners, indeed, search in the space of plans (solutions); directional planners, however,
are able to exploit a decomposition propertyfor which a partial plan tail or head σ can be
summarized by the state sσ obtained by regressing the goal or progressing the initial state
through σ . This decomposition is not possible in non-directional partial plans as arising
from POCL, SAT, or CSP formulations. In all cases, however, in order to search effectively
for optimal plans it is necessary to detect and prune partial plans σ that can only lead to so-
lutions with cost exceeding a certain bound B . In state-based planners this is accomplished
by comparing the bound B with the value of an explicit evaluation function f (σ ) that adds
up the accumulated cost g(σ ) of the plan and an estimate h(sσ ) of the ‘cost to go’. In SAT
and CSP formulations, a constraint f ∗(σ ) � B or f ∗(σ ) = B defining the feasible partial
plans σ is explicitly added (f ∗ stands for the optimal cost function); e.g., in SAT formula-
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tions unit clauses like p10 and q10 are added when searching for plans leading to the goals
p and q with costs not exceeding B = 10. Planning schemes based on POCL branching,
on the other hand, have lacked comparable pruning mechanisms. Recent proposals like
[35,47] extend POCL planning with guiding non-admissible heuristics, leaving optimality
considerations aside. Here we aim to achieve both good performance and optimality in the
more general setting of temporal planning.

3.3. Temporal planning

We consider a simple extension of the Strips language that accommodates concurrent
actions with integer durations. A number of extensions could easily be added but we have
chosen to keep the model as simple as possible focusing instead on performance and opti-
mality issues. The appeal of POCL planning for rich temporal settings is discussed in [39].
A temporal planning problem is a tuple P = 〈A,I,O,G〉 where A is a set of ground atoms
(the boolean variables of interest), I ⊆ A and G ⊆ A represent the initial and goal situa-
tions, and O is the set of ground Strips operators, each with precondition, add, and delete
list pre(a), add(a), and del(a), and duration dur(a). As is common in POCL Planning,
we also consider two dummy actions Start and End with zero durations, the first with an
empty precondition and effect I ; the latter with precondition G and empty effects. As in
GRAPHPLAN two actions a and a′ interfere when one deletes a precondition or positive
effect of the other. We follow the simple model of time in [40], and define a valid plan as
a plan where interfering actions do not overlap in time. In other words, we assume that the
preconditions need to hold until the end of the action, and that the effects also hold at the
end and cannot be deleted during the execution by a concurrent action. We are interested
in computing valid plans with minimum makespan.Other models of concurrency could
also be used (see [14]). When all actions have uniform durations, the model reduces to the
standard model of parallel planning.

A scheduleP is a finite set of time stamped actions 〈ai, ti〉, i = 1, . . . , n, where ai is
an action and ti is a non-negative integer indicating the starting time of ai (its ending time
is ti + dur(ai)). P must include the Start and End actions, the former with time tag 0.
The same action (except for these two) can be executed more than once in P if ai = aj

for i 	= j . In such a case, ai and aj refer to two occurrencesof the same action. Two
action occurrences ai and aj overlap in P if one starts before the other ends; namely if
[ti , ti + dur(ai)] ∩ [tj , tj + dur(aj )] contains more than one time point.

A schedule P is a valid plan iff interfering actions do not overlap in P and for every
action occurrence ai in P its preconditions p ∈ pre(a) are true at time ti . This condition is
inductively defined as follows: p is true at time t = 0 iff p ∈ I , and p is true at time t > 0
if either p is true at time t − 1 and no action a in P ending at t deletes p, or some action
a′ in P ending at t adds p.

The makespanof a plan P is the time tag of the Endaction. An optimal temporal planner
computes valid plans with minimum makespan. For this, it is actually sufficient to have a
planner that is sound and complete in the following sense: a valid plan with makespan
equal to a given bound B is found iff one such plan exists. There are then many strategies
for adjusting the bound B so that an optimal makespan is produced; e.g., the bound may
be increased until a plan is found, or can be decreased until no plan is found, etc.
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3.4. POCL planning

A partial plan or state σ in classical POCL planning corresponds to a set of com-
mitments represented by a tuple σ = 〈Steps,Ord,CL,Open〉, where Stepsis the set of
actions in the partial plan σ , Ord is a set of precedence constraints on Steps, CL is a
set of causal links, and Openis a set of open preconditions [20,32,46] (we assume that
actions are all grounded). A precedence constraint a ≺ a′ states that action a precedes
action a′ in the plan, a causal linka[p]a′ states that action a supports the precondition
p of action a in σ , while an open precondition[p]a states that action a in the plan
has a precondition p that is not yet supported. The initial state σ0 is given by the tuple
〈{Start,End}, {Start≺ End},∅, {[G1]End, . . . , [Gm]End}〉 where G1,G2, . . . ,Gm are the
top level goals in G.

Branching in POCL planning proceeds by picking a ‘flaw’ in a non-terminal state σ

and applying the possible repairs[20,46]. Flaws are of two types. Open precondition flaw
[p]a in σ are solved by selecting an action a′ that supports p and adding the causal link
a′[p]a to CL and the precedence constraint a′ ≺ a to Ord (a′ should also be added to Steps
if a′ /∈ Steps). Similarly, threats—which refer to situations in which an action a ∈ Steps
deletes the condition p in a causal link a1[p]a2 in CL with the ordering a1 ≺ a′ ≺ a2
consistent with Ord—are solved by placing one of the precedence constraint a′ ≺ a1 or
a2 ≺ a′ in Ord. A state is terminal if it is inconsistent (i.e., the ordering Ord is inconsistent
or contains flaws that cannot be fixed) or is a goal (is consistent and contains no flaws).

4. Temporal POCL planning

POCL branching can be adapted to the temporal setting in a direct way (e.g., [27]).
While extensions to rich temporal settings have been considered in [18,37,39], here we
consider a simple extension obtained by the addition of temporal variables T (a) for each
of the actions a in the current state σ (i.e., a ∈ Steps), where T (a) stands for the start-
ing time of a. These temporal variables have initial domains T (Start) = 0, T (End) = B ,
and T (a) :: [0,B − dur(a)] where B is the bound on the makespan (Start and End are
the two ‘dummy’ actions used in POCL planning). The resulting states σ have the form
σ = 〈Steps,OrdT ,CL,Open, T (·)〉 where the qualitative precedence ordering Ord has
been replaced by the set of temporal variables T (a), a ∈ Stepsand their domains, along
with a set OrdT of temporal constraints over them. A precedence constraint stating that
action a precedes action a′ becomes the temporal constraint T (a) + dur(a) � T (a′). The
qualitative precedence relation Ord from classical POCL planning can be preserved al-
though this is not strictly necessary. Initially, the set OrdT is empty.

As before, branching proceeds by picking a ‘flaw’ in a non-terminal state σ and applying
the possible repairs. Open precondition flaws[p]a in σ are solved by selecting an action
a′ that supports p, and adding the causal link a′[p]a to CL and the temporal constraint
T (a′) + dur(a′) � T (a) to OrdT . The action a′ is added to Stepsif a′ /∈ Stepsand in
such case a variable T (a′) for a′ is created. Similarly, causal link threats, i.e., situations
in which an action a ∈ Stepsmay delete a condition p ∈ del(a) in a causal link a1[p]a2
in CL, are solved by adding one of the temporal constraints T (a) + dur(a) � T (a1) or
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pre-
istent
T (a2) + dur(a2) � T (a) to OrdT . A terminal state in the resulting space is either a state
with an inconsistent set of temporal constraints (a dead-end) or a state with a consistent set
of temporal constraints and no flaws (a goal state).

The temporal constraints in OrdT form a Simple Temporal Problem (STP) [9] whose
consistency can be tested efficiently by applying a form of constraint propagation known as
bounds consistency[29,48], where the lower and upper bounds Tmin(a) and Tmax(a) of the
variables T (a) in constraints of the form T (a)+dur(a) � T (a′) are updated as Tmax(a) :=
min[Tmax(a), Tmax(a

′) − dur(a)] and Tmin(a
′) := max[Tmin(a

′), Tmin(a) + dur(a)] until a
fixed point is reached or a variable domain becomes empty.

With two additional provisions, it is possible to verify that the resulting branching
scheme is soundand complete; i.e., terminal goal-states σ = 〈Steps,OrdT ,CL,Open, T (·)〉
encode a valid temporal plan P with makespan B where actions in σ execute at their ear-
liest possible times; i.e., P = 〈ai, ti = Tmin(ai)〉ai∈Steps, and one such terminal goal state
will be generated when one such valid temporal plan exists.

The two required provisions are the following. First, in the absence of a qualitative
precedence ordering on actions as in POCL planning, we need to regard an action a

deleting the condition p in a causal link a1[p]a2 as a threat when neither of the two
temporal conditions Tmin(a) + dur(a) � Tmin(a1) and Tmin(a2) + dur(a2) � Tmin(a) hold.
This is because the lower bounds Tmin provide a consistent solution to a STP if the STP
is consistent, and at the same time, each of the constraints T (a) + dur(a) � T (a1) and
T (a2) + dur(a2) � T (a) posted as a result of a threat fix the threat through bounds con-
sistency propagation. Second, in accordance with the semantics, we need to ensure that
interfering actions do not overlap in time. For that, let us say that a pair of interfering ac-
tions are precondition-interferingwhen one action deletes a precondition of the other, and
are effect-interferingotherwise. It is easy to verify that the branching scheme above en-
sures that precondition-interfering actions cannot overlap in time in the final plan, as such
interferences give rise to causal link threats. On the other hand, effect-interfering actions
may overlap. To rule out such situations, it is then sufficient to branch also on a second
class of threats; mutex threats: pairs of effect-interfering actions a and a′ such that neither
Tmin(a) + dur(a) � Tmin(a

′) nor Tmin(a
′) + dur(a′) � Tmin(a) hold in the state σ . Such

flaws are solved by adding to OrdT one of the temporal constraints T (a)+dur(a) � T (a′)
or T (a′) + dur(a′) � T (a).

Modern Constraint-Based Interval (CBI) planners [18,39] are based on similar ideas
and are able to deal with more expressive languages. Yet, as in standard POCL and Dy-
namic CSP planners [19], the following performance problemremains: pruning partial
plans whose STP network is not consistent does not suffice to match the performance of
modern planners. For this, more powerful representations and inference methods for
dicting that all STP networks in the way to the goal will eventually become incons
are needed. This is indeed what CPT does in the TOWER-n domain considered above for
planning horizons smaller than the optimal horizon, reporting an inconsistency by pure in-
ference without doing any search. Moreover, in the same domain, for the optimal planning
horizon, CPT finds the solution without doing any search either. In both cases, as we see
next, the key is the ability of CPT to reason about all the actions in the problem, and not
only about the actions in the plan being considered.
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5. A constraint programming formulation

The performance limitation of current constraint-based POCL planners arises mainly
from their limitation to reason about the actions in the current plan only.Most often, noth-
ing is inferred about an action a until the action is considered for inclusion in the plan.
Still, as we have seen in Section 2, a lot can be inferred about such actions including re-
strictions about their possible starting times and supporters. Some of this information can
actually be inferred before any commitments are made; the lower bounds on the start-
ing times of all actions as computed in GRAPHPLAN being one example. Yet this is not
enough; if similar performance and optimality guarantees are to be achieved in the POCL
setting, inferences that take advantage of the commitments made are also necessary. In or-
der to perform such inferences, the representation of the space of possible commitments
is crucial. We thus make two changes in relation to the ‘standard’ temporal POCL planner
above. First, we introduce and reason with variables that involve all the actions a in the
domain; not only those present in the current plan. And second, for all such actions we
introduce variables S(p,a) and T (p,a) that stand for the possibly undetermined action
supporting precondition p of a and the possibly undetermined starting time of such an ac-
tion, and perform limited but useful forms of reasoning over such variables. A causal link
a′[p]a thus becomes a constraint S(p,a) = a′, which in turn implies that the supporter a′
of precondition p of a starts at time T (p,a) = T (a′).3

Initially, we will follow the formulation in [45], and make an important restriction;
namely that no (ground) actiona in the domain occurs more than once in the plan.This
canonicity restrictionallows us to collapse the notions of action and action occurrence,
leading to a number of simplifications. Later on we will show how this restriction is re-
moved in the current version of CPT. The restriction is a meaningful extension of the
common assumption found in scheduling research where every action in the domain must
occur exactly once,and as we will see below, it happens to be true in most current bench-
marks in planning.

The basic CP formulation of the CPT planner is given in four parts: preprocessing, vari-
ables, constraints, and branching.After the preprocessing, the variables are created and the
constraints are asserted and propagated. If an inconsistency is found, no valid plan for the
problem exists. Otherwise, the constraint T (End) = B for the bound B set to the earliest
possible starting time of the action End (i.e., B = Tmin(End)) is asserted and propagated.
The branching scheme then takes over and if no solution is found, the process restarts by
retracting the constraint T (End) = B and replacing it with T (End) = B + 1, and so on.

5.1. Preprocessing

In the preprocessing phase, the planner computes the heuristic values h2
T (a) and

h2
T ({p,q}) for each action a ∈ O and each atom pair {p,q} as in [17]. The values pro-

vide lower bounds on the times to achieve the preconditions of a and the pair of atoms

3 Propositional ‘causal’ encodings of Strips planning problems have been formulated and analyzed in [22,31].
Our encodings share a number of features with these formulations but are more compact due to the use of a
temporal representation.
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p,q , from the initial situation I . In addition, we identify the (structural) mutexesas the
pairs of atoms p,q for which h2

T ({p,q}) = ∞. We then say that an action a e-deletesan
atom p when either a deletes p, a adds an atom q such that q and p are mutex, or a pre-
condition r of a is mutex with p and a does not add p (in all cases p is false after doing
a; see [35]).

In addition, the simpler heuristic h1
T is used for defining distancesbetween actions [42]

as follows. For each action a ∈ O , we compute the h1
T heuristic from an initial situation

Ia that includes all facts except those that are e-deleted bya. We then set the distances
dist(a, a′) to the resulting h1

T (a′) values. Clearly, these distances encode lower bounds on
the slackthat can be inserted between the completion of a and the start of a′ in any legal
plan in which a′ follows a. These distances are not symmetric and their calculation, which
remains polynomial, involves the computation of the h1

T heuristic |O| times.
The distances dist(Start, a) and dist(a,End) are defined in a slightly different way. The

former are obtained by running a shortest-path algorithm over a ‘relevance graph’ where
the nodes are the actions a ∈ O and the action End is the source node. An edge a → a′
in this graph means that a′ is ‘relevant’ to a (namely that it adds a precondition p of a)
and its cost is given by δ(a′, a) = dur(a′)+ dist(a′, a). The distances dist(a,End) are then
set to the cost of the shortest-path connecting End to a in this graph, minus dur(a). The
distances dist(Start, a) are set to h2

T (a).

5.2. Variables and domains

The state σ of the planner is given by a collection of variables, domains, and constraints.
As emphasized above, the variables are defined for each action a ∈ O and not only for the
actions in the current plan. Moreover, variables are created for each precondition p of each
action a as indicated below. The domain of variable X is indicated by D[X] or simply
as X :: [Xmin,Xmax] if X is a numerical variable. The variables, their initial domains, and
their meanings are:

• T (a) :: [0,∞] encodes the starting time of each action a, with T (Start) = 0;
• S(p,a) encodes the support of precondition p of action a with initial domain

D[S(p,a)] = O(p) where O(p) is the set of actions in O that add p;
• T (p,a) :: [0,∞] encodes the starting time of S(p,a);
• InPlan(a) :: [0,1] indicates the presence of a in the plan; InPlan(Start) =

InPlan(End) = 1 (true).

In addition, the set of actions in the current plan is kept in the variable Steps; i.e.,
Steps= {a | InPlan(a) = 1}. Variables T (a), S(p,a), and T (p,a) associated with actions
a which are not yet in the plan (i.e., actions for which the domain of InPlan(a) remains
the interval [0,1] in σ ) are conditionalin the following sense: these variables and their do-
mains are meaningful only under the assumption that they will be part of the plan. In order
to ensure this interpretation, some care needs to be taken in the propagation of constraints
as explained below.
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5.3. Constraints

The constraints correspond basically to disjunctions, rules, and temporal constraints,
or their combination. Most of these constraints are redundant; they are not needed for
soundness or completeness but for performance reasons (pruning values and detecting
inconsistencies earlier). Disjunctions are interpreted constructively: when one disjunct is
false, the other is enforced. Similarly for rules: when the antecedent constraint holds, the
consequent is enforced. The conditions under which a constraint is regarded as (necessar-
ily) true or false in a state are determined by the nature of the constraint and the domains of
the variables; roughly, a constraint is true (false) if it is true (false) for anypossible assign-
ment given the domains. E.g., T (a) < T (a′) is true if the variable domains are such that
Tmax(a) < Tmin(a

′) holds, is false if Tmin(a) � Tmax(a
′) holds, and otherwise is undeter-

mined.4 Temporal constraints are propagated by bounds consistency as indicated above. In
constraints involving terms of the form opa′∈D[S(p,a)], information propagates fromS(p,a)

but not into S(p,a); propagation into such variables is achieved by explicit rules with vari-
ables S(p,a) on the right hand side. The constraints apply to all actions a ∈ O and all
p ∈ pre(a); we use δ(a, a′) to stand for dur(a) + dist(a, a′).

• Bounds: For all a ∈ O ,

T (Start) + δ(Start, a) � T (a),

T (a) + δ(a,End) � T (End).

• Preconditions: Supporter a′ of precondition p of a must precede a by an amount that
depends on δ(a′, a):

T (a) � min
a′∈D[S(p,a)]

(
T (a′) + δ(a′, a)

)
,

T (a) � T (p,a) + min
a′∈D[S(p,a)]

δ(a′, a),

T (a′) + δ(a′, a) > T (a) → S(p,a) 	= a′.

• Causal link constraints: For all a ∈ O , p ∈ pre(a) and a′ that e-deletes p, a′ precedes
S(p,a) or follows a

T (a′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′)

� T (p,a) ∨ T (a) + δ(a, a′) � T (a′).

• Mutex constraints: For effect-interfering a and a′

T (a) + δ(a, a′) � T (a′) ∨ T (a′) + δ(a′, a) � T (a).

4 Similarly, T (a) = T (a′) is true if Tmin(a) = Tmax(a) = Tmin(a
′) = Tmax(a

′) holds, and is false if either
T (a) < T (a′) or T (a) > T (a′) holds. The conditions for enumerated variables like S(p,a) are similar; S(p,a) =
a′ is true if D[S(p,a)] = {a′} and is false if a′ /∈ D[S(p,a)]. In all cases, the constraint ¬C is true (false) if C is
false (true). In CP, it is common to say that a constraint is entailedin a state rather than true [44]. We also note
that T (a) < T (a′) is true in our modified CP engine when a′ = End, regardless of the domain of T (a).
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ed
-

• Support constraints: T (p,a) and S(p,a) related by

S(p,a) = a′ → T (p,a) = T (a′),
T (p, a) 	= T (a′) → S(p,a) 	= a′,

min
a′∈D[S(p,a)]

T (a′) � T (p,a) � max
a′∈D[S(p,a)]

T (a′).

The constraints involving the variables S(p,a) and T (p,a) are lifted in the sense that
they apply to all possible supporters a′ of precondition p of a. As mentioned above,
the variables T (a), T (p,a), and S(p,a) are conditionalwhen InPlan(a) = 1 is neither
true or false. They become in-plan variables when InPlan(a) = 1 becomes true, and out-
plan variables when InPlan(a) = 1 becomes false. Constraints involving in-plan variables
only are propagated as usual, and furthermore, an empty domain raises an inconsistency.
Constraints involving an out-plan variable, on the other hand, are not propagated. Finally,
and most importantly, constraints involving conditional variables associated with the same
actiona and hence the same assumption (namely that a will be part of the plan) are propa-
gated but only in the direction of the conditional variables.This ensures that the domain of
a conditional variable depends only on the assumption that particular variable is in the plan
and on no other assumption. As a result, if the domain of a conditional variable associat
with an actiona becomes empty, it is inferred that the actiona cannot be part of the cur
rent plan and not that the current partial plan is inconsistent.More precisely, InPlan(a)

is set to 0 if the domain of a conditional variable associated with a becomes empty, and
in such case, the action a is removed from the domain of all support variables S(p,a′)
such that a adds p. On the other hand, when S(p,a′) = a holds for some action a′ in the
plan, InPlan(a) is automatically set to 1. Conditional variables of this type in constraint
programming have been considered in [13].

5.4. Branching

As in the temporal POCL planner described above, branching in CPT proceeds by
iteratively selecting and fixing flaws in non-terminal states σ and backtracking upon incon-
sistencies. A state σ is given by the variables, their domains, and the constraints involving
them. The initial state σ0 contains the variables, domains, and constraints above, along
with the bounding constraint T (End) = B where B is the current bound on the makespan.
A state is inconsistent when a non-conditional variable has an empty domain, while a con-
sistent state σ with no flaws is a goal statefrom which a valid plan P with bound B can
be extracted by scheduling the in-plan variables at their earliest starting times.

The definition of ‘flaws’ parallels the one considered above for temporal POCL plan-
ning:

• Support Threats: a′ threats a supportS(p,a) when both actions a and a′ are in the
current plan, a′ e-deletes p, and neither Tmin(a

′)+dur(a′) � Tmin(p, a) nor Tmin(a)+
dur(a) � Tmin(a

′) hold.
• Open Conditions: S(p,a) is an open conditionwhen |D[S(p,a)]| > 1 holds for an

action a in the plan.
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• Mutex Threats: a and a′ constitute a mutex threatwhen both actions are in the plan,
they are effect-interfering, and neither Tmin(a) + dur(a) � Tmin(a

′) nor Tmin(a
′) +

dur(a′) � Tmin(a) hold (two actions are effect-interfering in CPT when one deletes a
positive effect of the other, and neither one e-deletesa precondition of the other).

Upon selecting a flaw in a state σ , a binary split is created which we denote as [C1;C2]
where C1 and C2 are constraints. The first child σ1 of σ is obtained by adding C1 to σ

and closing the result under the propagation rules; the second child σ2 of σ is generated
by adding the constraint C2 instead, when the search beneath σ1 fails. The binary splits
generated for each type of flaw are as follows:

• A Support Threat〈a′, S(p, a)〉 generates the split
[
T (a′) + dur(a′) + min

a′′∈D[S(p,a)]
dist(a′, a′′) � T (p,a);

T (a) + δ(a, a′) � T (a′)
]
.

• An Open ConditionS(p,a) generates for a selected support a′ the split[
S(p,a) = a′; S(p,a) 	= a′].

• A Mutex Threat〈a, a′〉 generates the split[
T (a) + δ(a, a′) � T (a′); T (a′) + δ(a′, a) � T (a)

]
.

The branching scheme is sound and complete under the canonical restrictions above.
Soundness follows from the validity of the plan P obtained from a consistent state σ with
no flaws by scheduling the in-plan actions ai at the earliest possible times ti = Tmin(ai).
Completeness in turn follows from the soundness of the propagation rules and the validity
of the binary splits: namely for each possible binary split [C1;C2], the disjunction C1 ∨C2
is valid; thus if there is a plan with makespan B compatible with the commitments in σ ,
then there will be a plan compatible with one of the two sons of σ .

5.4.1. Branching heuristics
In each step, the selected flaw for repair in CPT is a Support Threat if one exists, else an

Open Condition if one exists, else a Mutex Threat, until no flaws are left or an inconsistency
is detected. The heuristic for selecting among the existing flaws is the following:

• Support Threats〈a′, S(p, a)〉 with minimum slack

max
[
slack

(
a′ ≺ S(p,a)

)
,slack(a ≺ a′)

]

selected first (i.e., most constrained first; see [41]). Basically, the slack of an ordering
a ≺ a′ stands for the ‘room’ for a′ in the schedule assuming it must follow a; namely,

slack(a ≺ a′) = Tmax(a
′) − [

Tmin(a) + δ(a, a′)
]
,

slack
(
a′ ≺ S(p,a)

)

= Tmax(p, a) − [
Tmin(a

′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′)
]
.
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• Open ConditionsS(p,a) selected latest first; i.e., maximizing the expression
mina′∈D[S(p,a)] Tmin(a

′), splitting on the ‘arg min’ action a′ (i.e., creating the split
[S(p,a) = a′;S(p,a) 	= a′]).

• Mutex Threats〈a, a′〉 selected in simple fashion; first encountered such pair in a search
over Stepsselected first.

The heuristics for Support Threats and Open Conditions have a significant influence on
performance but not so the heuristic for Mutex Threats (most often no Mutex Threats are
left after removal of Support Threats and Open Conditions).

5.5. Mutex sets

The code incorporates an enhancement that helps in some domains without representing
a significant burden in others. It has to do with the idea of mutex sets:sets M of actions in
the plan,(not necessarily pairs) such that any two actions in M are interfering. Since such
actions cannot overlap, the time window associated with the set of actions M :

max
a∈M

[
Tmax(a) + dur(a)

] − min
a∈M

Tmin(a)

must provide enough ‘room’ for scheduling all actions in a ∈ M in sequence. Taking into
account the pre-computed distances, an estimate for the time needed for scheduling all
actions in M is given by

∆(M) =
∑
a∈M

[
dur(a) + min

a′∈M|a′ 	=a
dist(a, a′)

] − max
{a,a′}⊆M

dist(a, a′)

which expresses a lower bound on the time needed to schedule all the actions in M , one
before another, except for the action scheduled last. With these lower bounds, we define
the Mutex Setconstraint as

max
a′∈M

[
T (a′) + dur(a′)

] − min
a′′∈M

T (a′′) � ∆(M)

and apply it to somemutex sets M identified from the actions Stepsin the plan in a greedy
fashion, as described below (computing the largest mutex sets in the plan seems too ex-
pensive). The idea of mutex sets is adapted from similar concepts used in constraint-based
scheduling such as edge-finding;see [2,6,26].

• Global mutex setsMi are built greedily as new actions are added to Steps. Initially a
single mutex set M0 with the Startand Endactions is defined; then any time an action
a is added to Steps, a is added to each existing mutex set Mi , i = 0, . . . , k, such that
a is interfering with each action a′ in Mi , and a new mutex set Mk+1 is created with
a only when a cannot be added to any existing mutex set. The mutex set constraint is
enforced for each such set Mi .

• Causal link mutex setsM− and M+ are defined also for each ‘causal link’ S(p,a)[p]a
in the plan. Initially, these sets are empty, then when a new action a′ is added to the
plan that e-deletes p and cannot follow a (resp. cannot precede S(p,a)), a is added to
M− (resp. to M+) if a is interfering with each action in M− (resp. in M+). For these
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mutex sets M+ and M−, the following CL Mutex Set constraintis enforced, which
unlike the mutex set constraint above, not only detects inconsistencies, but also prunes
the bounds of the temporal variables T (p,a) and T (a):

min
a′∈M− T (a′) + ∆(M−) � T (p,a) ∧ T (a) + dur(a)

� max
a′∈M+

[
T (a′) + dur(a′)

] − ∆(M+).

In addition, for all a′ in the plan that e-delete p that can follow S(p,a) and precede
a, we evaluate the consistency of the mutex set M− ∪ {a′} (resp. M+ ∪ {a′}) if a′
is interfering with each action in M− (resp. M+). If the set is inconsistent (i.e., it
violates the mutex constraint), then it is inferred that a′ must follow a (resp. must
precede S(p,a)).

5.6. Relaxation of the canonicity assumption

The formulation above exploits the canonicity restriction that no (ground) action a in
the domain occurs more than once in the plan. This restriction allows us to collapse the
notions of action and action occurrence, making the formulation simpler but less general.
In the current CPT planner, this restriction is removed by establishing a distinction between
action typesand action tokens. Plans contain only action tokens which are all instances
of the fixed set of action types defined by the initial set of operators. On the other hand,
constraints and domains, that initially involve only action types, eventually involve both
action tokens and types. Basically, an action type is regarded as a place holder for all the
action tokens of that type that have not made it yet into the plan. Action tokens are created
dynamically from action types when an action type is selected for supporting an open
condition in the plan. This happens when the propagation narrows down the domain of a
support variable S(p,b) for an action (token) b in the plan to the singleton {a}, where a

is an action type, or when the action type a is explicitly chosen as the value of a support
variable S(p,b). In such a case, a new token a′ of type a is created by ‘cloning’; namely
for the new instance a′ of type a, the variables T (a′), S(q, a′), and T (q, a′) are created as
fresh copies of the variables T (a), S(q, a), and T (q, a) with their corresponding domains,
where q is a precondition of a. In addition, the new token a′ is added as an independent
action to all support domains that include the action type a, and all the constraints involving
the variables T (a), S(q, a), and T (q, a) are copied with a′ in place of a. The value of the
variable InPlan(a′) is then set to 1 and a′ is added to Steps. Finally, if the action instance
a′ of the action type a was created because action type a was chosen (by branching or
propagation) to support the precondition p of an action b, then the variable S(p,b) is set
to the new instance a′ of a.

As an illustration, let us consider a problem in the Blocks World domain with three
blocks A, B and C with on(C,B) true in the initial state. The action stack(A,B) has
clear(B) as precondition, so the domain of the support variable S(clear(B), stack(A,B))

is equal to {putdown(B), stack(B,A), stack(B,C), unstack(A,B), unstack(C,B)}. Sup-
pose now that InPlan(stack(A,B)) = 1 and that the ‘Open Condition’ branching rule
chooses as the value of the support variable S(clear(B), stack(A,B)) the action type
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unstack(C,B). The ‘cloning’ operation then creates the new action token unstack(C,B)′
of type unstack(C,B), and then performs the following operations:

• First, the variables InPlan(unstack(C,B)′), T (unstack(C,B)′), S(clear(C),

unstack(C,B)′), S(on(C,B),unstack(C,B)′), T (clear(C),unstack(C,B)′) and
T (on(C,B),unstack(C,B)′) are created, their domains being a copy of the cor-
responding domains of the variables involving the action type unstack(C,B). For
instance, if the domain of the temporal variable T (unstack(C,B)) is [0,5], then the
domain of the cloned variable T (unstack(C,B)′) is set to [0,5] as well.

• Then all the constraintsinvolving the type unstack(C,B) are copied with the token
unstack(C,B)′ instead of unstack(C,B), and all these constraints are entered into the
current state. For example, the following new precondition constraints are added

T
(
unstack(C,B)′

)

� min
a′∈D[S(clear(B),unstack(C,B)′)]

(
T (a′) + δ

(
a′,unstack(C,B)′

))

and

T
(
unstack(C,B)′

)

� min
a′∈D[S(on(C,B),unstack(C,B)′)]

(
T (a′) + δ

(
a′,unstack(C,B)′

))
.

• Also the domains of all the support variables containing the action type un-
stack(C,B) are extended with the new action token unstack(C,B)′. For example,
since unstack(C,B) produces holding(C), the domain of S(holding(C), stack(C,A))

which was equal to {pickup(C), unstack(C,A), unstack(C,B)} is augmented with
unstack(C,B)′; i.e., D[S(holding(C), stack(C,A))] becomes equal to {pickup(C),

unstack(C,A), unstack(C,B), unstack(C,B)′}. Similarly, unstack(C,B)′ is added to
D[S(clear(B), pickup(B))], which becomes equal to {unstack(A,B), unstack(C,B),

unstack(C,B)′}.
• Finally, the causal link is instantiated; i.e., the support variable S(clear(B), stack(A,

B)) is set to the new token unstack(C,B)′ which is added to the plan by setting
InPlan(unstack(C,B)′) to 1, and the effects are propagated.

This scheme provides a lazy implementation of a planning domain with an infinite num-
ber of action tokens. In such a scheme, an action type represents all the action instances of
that type that have not made it yet into the plan, and which are thus indistinguishable up to
that point. This changes however when a new instance is added to the plan, requiring the
‘cloning’ operation detailed above. In our example, after the action token unstack(C,B)′ is
‘cloned’ from the action type unstack(C,B), the two actions become ‘independent’, mean-
ing that from that point on, things work as if they were two completely different actions in
the domain.

Notice that if during the search InPlan(a) = 0 for an action type a is inferred, all new
action tokens of that type get automatically excluded from the plan. Namely, action types
are true place holders for the information that is common to all the action tokens of the
same type that are not yet in the plan.
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5.7. Implementation

The CPT planner has been implemented using the CHOCO CP library [28] that oper-
ates on top of the CLAIRE programming language [7] and compiles into C++. In early
stages of the implementation, we wrote the constraints in CHOCO in a way that resem-
bled the formulation above, yet we progressively moved to an implementation based on
propagation rules that avoids unnecessary checks and triggerings, and speeds up the prop-
agations. The current implementation is a collection of rules which are triggered by the
event mechanism of CHOCO. Updates on lower bounds, upper bounds, and domain val-
ues are recorded in event queues, where similar events are ‘collapsed’; e.g., if the lower
bound of a variable X is increased successively from 1 to 2, and then from 2 to 3 be-
fore the first event is dequeued, only one event is stored, stating that the lower bound of
X is increased from 1 to 3. When an event is dequeued, the relevant rules are triggered,
performing the corresponding propagations (namely, updates on variables constrained by
the modified variables are done which may trigger other rules and further updates). The
only constraints not re-implemented in terms of rules are the dynamic constraints; namely
those that are posted as a result of branching. We modified the CHOCO engine for allow-
ing to retract such constraints upon backtracking, and also for enforcing the semantics of
conditional variables. As stated above, for the latter an empty domain does not raise an
inconsistency but forces an action out of the plan. Over temporal variables, the conditional
behavior is obtained by handling those variables ourselves, while over support variables,
the conditional behavior is obtained by simply introducing a dummy action α added to
their domains, with D[S(p,a)] = {α} meaning that p cannot be supported by any action.
The InPlan(a) variables are not implemented as CP variables either; the information about
the status of actions in the plan is compiled in the code of the propagation rules. Finally,
for the removal of the canonicity restriction, the CHOCO engine was extended so that vari-
ables can be created dynamically, values can be added dynamically to their domains, and
all such actions can be retracted upon backtracking. The code and several executables are
available for download from our page.5

6. A working example

We revisit the example in Section 2 for showing how the backtrack-free behavior of CPT

in the TOWER-n domain follows from the proposed constraint programming formulation.
Recall that the task in TOWER-n is to build an ordered tower of n blocks, b1, . . . , bn, with
b1 on top, all blocks laying initially on the table. The single optimal plan for this problem
involves picking each block bi from the table and stacking it on block bi+1, from i = n− 1
until i = 1. This is a trivial domain but which no other optimal planner solves without
search. Indeed, the inferences are not trivial for a domain-independent planner as we will
see.

The temporal variablesand their domains after preprocessing are (i, j ∈ [1, n], i 	= j ):

5 CPT home page: http://www.cril.univ-artois.fr/~vidal/cpt.en.html.
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• T (Start) :: [0,∞]
• T (End) :: [4,∞]
• T (pickup(bi)) :: [0,∞]
• T (putdown(bi)) :: [1,∞]
• T (stack(bi, bj )) :: [1,∞]
• T (unstack(bi, bj )) :: [2,∞]
• T (on(bi, bi+1),End) :: [1,∞]
• T (ontable(bi),pickup(bi)) :: [0,∞]
• T (handempty,pickup(bi)) :: [0,∞]
• T (clear(bi),pickup(bi)) :: [0,∞]
• T (holding(bi),putdown(bi)) :: [0,∞]
• T (on(bi, bj ),unstack(bi, bj )) :: [1,∞]
• T (handempty,unstack(bi, bj )) :: [0,∞]
• T (clear(bi),unstack(bi, bj )) :: [0,∞]
• T (holding(bi),stack(bi, bj )) :: [0,∞]
• T (clear(bj ),stack(bi, bj )) :: [0,∞]

The support variablesand their domains in turn are:

• S(on(bi, bi+1),End) :: {stack(bi, bi+1)}
• S(ontable(bi),pickup(bi)) :: {Start,putdown(bi)}
• S(handempty,pickup(bi)) :: {Start} ∪ PUTDOWN∪ STACK
• S(clear(bi),pickup(bi)) :: {Start,putdown(bi)} ∪ STACKi,∗ ∪ UNSTACK∗,i

• S(holding(bi),putdown(bi)) :: {pickup(bi)} ∪ UNSTACKi,∗
• S(on(bi, bj ),unstack(bi, bj )) :: {stack(bi, bj )}
• S(handempty,unstack(bi, bj )) :: {Start} ∪ PUTDOWN∪ STACK
• S(clear(bi),unstack(bi, bj )) :: {Start,putdown(bi)} ∪ STACKi,∗ ∪ UNSTACK∗,i

• S(holding(bi),stack(bi, bj )) :: {pickup(bi)} ∪ UNSTACKi,∗
• S(clear(bj ),stack(bi, bj )) :: {Start,putdown(bj )} ∪ STACKj,∗ ∪ UNSTACK∗,j

where

– PICKUP= {pickup(bi) | i ∈ [1, n]}
– PUTDOWN= {putdown(bi) | i ∈ [1, n]}
– STACK= {stack(bi, bj ) | i, j ∈ [1, n] ∧ j 	= i}
– STACKi,∗ = {stack(bi, bj ) | j ∈ [1, n] ∧ j 	= i}
– STACK∗,i = {stack(bj , bi) | j ∈ [1, n] ∧ j 	= i}
– UNSTACK= {unstack(bi, bj ) | i, j ∈ [1, n] ∧ j 	= i}
– UNSTACKi,∗ = {unstack(bi, bj ) | j ∈ [1, n] ∧ j 	= i}
– UNSTACK∗,i = {unstack(bj , bi) | j ∈ [1, n] ∧ j 	= i}

We explain the inferences that yield the backtrack-free behavior in TOWER-n by quoting
the high-level account in Section 2, and showing how it follows from the constraints in CPT

and the general constraint propagation mechanisms supported in the implementation. For
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keeping the description simple we describe the canonical implementation where there is
no need for distinguishing action types from tokens.

Step1: Addition of stackactions to the plan.

. . . First, it is inferred that each subgoal on(bi, bi+1) must be achieved by the action
stack(bi, bi+1). This inference is simple as there is a single possible supporter in each
case . . .

• For each i ∈ [1, n − 1] indeed, S(on(bi, bi+1),End) has a singleton domain, and
since InPlan(End) = 1, S(on(bi, bi+1),End) = stack(bi, bi+1) and InPlan(stack(bi,

bi+1)) = 1 are inferred.

Step2: Increasing the starting times of stackactions.

. . . More interestingly, it is then inferred that these stack operations must be ordered se-
quentially in descending order of i; namely, stack(bn−1, bn) first, then stack(bn−2, bn−1),
and so on, until stack(b1, b2). This is inferred by reasoning with and resolving the threats
affecting the causal links stack(bi, bi+1)[on(bi, bi+1)]End. Moreover, it is also inferred
that the first action in the sequence cannot occur earlier than t = 1, the second action not
earlier than t = 3, the third not earlier than t = 5, and so on, and that the Endaction cannot
start earlier than 2(n − 1), the optimal time bound . . .

• The action stack(bn−1, bn) e-deletes on(bn−2, bn−1), and so threatens the causal link
stack(bn−2, bn−1)[on(bn−2, bn−1)]End. Following the causal link constraint, since
stack(bn−1, bn) cannot follow End, it must precede stack(bn−2, bn−1), and hence the
disjunct

T (a′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′) � T (p,a)

with p = on(bn−2, bn−1), a = End and a′ = stack(bn−2, bn−1) is inferred, which
since dist(stack(bn−1, bn),stack(bn−2, bn−1)) = 1 and dur(stack(bn−1, bn)) = 1,
yields

T
(
stack(bn−1, bn)

) + 2 � T
(
on(bn−2, bn−1),End

)

and therefore

T
(
on(bn−2, bn−1),End

)
� 3

as from preprocessing, T (stack(bi, bj )) � 1 for all i, j .
• Then from the constraint S(p,a) = a′ → T (p,a) = T (a′) and the inferred constraint

S(on(bn−2, bn−1),End) = stack(bn−2, bn−1),

T
(
stack(bn−2, bn−1)

)
� 3.

• In a similar way, the disjunct

T
(
stack(bn−2, bn−1)

) + 2 � T
(
on(bn−3, bn−2),End

)

of the causal link constraint becomes active, and since T (stack(bn−2, bn−1)) � 3
holds, so does T (on(bn−3, bn−2),End) � 5, and from the constraint S(p,a) = a′ →
T (p,a) = T (a′) and S(on(bn−3, bn−2),End) = stack(bn−3, bn−2),

T
(
stack(bn−3, bn−2)

)
� 5.
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• The same process is iterated over all the actions stack(bi, bi+1) until

T
(
stack(b1, b2)

)
� 2(n − 1) − 1.

Then, as S(on(b1, b2),End) = stack(b1, b2), the precondition constraint

T (a) � min
a′∈D[S(p,a)]

(
T (a′) + δ(a′, a)

)

for a = Endand p = on(b1, b2), results in

T (End) � T
(
stack(b1, b2)

) + 1

which from T (stack(b1, b2)) � 2(n − 1) − 1, yields T (End) � 2(n − 1).

Step3: Setting the initial upper bound on the makespan and deriving upper bounds for the
stackactions.

. . . All these inferences result from the domain constraints and propagation mechanisms
before even a search bound B on the allowed makespan of the plan is fixed. After the
first bound B = 2(n − 1) is chosen (this is the earliest time at which the action End can
start), further inferences are made. First, the starting times T (ak) of all the actions ai in
the stack sequence above become fixed to their earliest possible starting times resulting in
T (ak) = 1 + 2k, for k = 1, . . . , n − 1, where ak is the kth action in the sequence (namely
ak = stack(bn−k, bn−k+1)) . . .

• The constraint T (End) = B on the makespan is asserted for B equal to the current
lower bound 2(n − 1) of variable T (End), and then from the bounding constraint

T (a) + δ(a,End) � T (End)

for a = stack(b1, b2), and δ(stack(b1, b2),End) = 1 (the stackactions have duration
1), it is inferred that

T
(
stack(b1, b2)

)
� 2(n − 1) − 1

and since we have T (stack(b1, b2)) � 2(n − 1) − 1, that

T
(
stack(b1, b2)

) = 2(n − 1) − 1.

• From the constraint S(p,a) = a′ → T (p,a) = T (a′), in turn, and S(on(b1, b2),

End) = stack(b1, b2), it is inferred also that

T
(
on(b1, b2),End

) = 2(n − 1) − 1.

• Then from the constraint T (stack(b2, b3))+2 � T (on(b1, b2),End) derived in step 2,
this propagates into

T
(
stack(b2, b3)

)
� 2(n − 1) − 3

but since T (stack(b2, b3)) � 2(n − 1) − 3 also from step 2, then

T
(
stack(b2, b3)

) = 2(n − 1) − 3.

• This continues iteratively until obtaining

T
(
stack(bn−1, bn)

) = 1.



V. Vidal, H. Geffner / Artificial Intelligence 170 (2006) 298–335 319
Step4: Addition of pickup(bn−1) to the plan.

. . . Then the pickup(bn−1), pickup(bn−2), . . . sequence gets added to the set of actions in
the plan at their correct starting times as a result of further reasoning that prunes the other
possible supports and times. For example, the precondition clear(bn) for the first action
a1 = stack(bn−1, bn) in the sequence can be supported by a number of unstack(∗, bn) and
stack(bn,∗) actions, and by Start. However, since any such supporter a′ must precede a1
and T (a1) = 1 is already fixed, T (a′) < 1 must hold, leaving a′ = Startas the only possible
supporter (at preprocessing, lower bounds on the starting time of actions are computed
from which it is known that T (a′) < 1 is true only for Startand pickupactions). For similar
reasons, all supporters unstack(bn−1,∗) for the other precondition holding(bn−1) of a1 are
pruned, leaving a′

1 = pickup(bn−1) as the only possible support. The process repeats for
the preconditions of a′

1 = pickup(bn−1) with all supporters a′ different than Start being
pruned as well . . .

• stack(bn−1, bn) has two preconditions: clear(bn) and holding(bn−1). From the
constraint T (a) � T (p,a) + mina′∈D[S(p,a)] δ(a′, a) with p = clear(bn) and a =
stack(bn−1, bn), as T (stack(bn−1, bn)) = 1, it is inferred that T (clear(bn),

stack(bn−1, bn)) � 0 and hence that

T
(
clear(bn),stack(bn−1, bn)

) = 0.

• The domain of variable S(clear(bn),stack(bn−1, bn)) contains Start and the ac-
tions in STACKn,∗ and UNSTACK∗,n. However, from preprocessing, the actions
in STACKn,∗ have starting times greater than or equal to 1, and the actions in
UNSTACK∗,n have starting times greater than or equal to 2. From the constraint

T (p,a) 	= T (a′) → S(p,a) 	= a′

with p = clear(bn), a = stack(bn−1, bn) and a′ ∈ STACKn,∗ ∪ UNSTACK∗,n, all the
actions in STACKn,∗ and UNSTACKn−1,∗ are then pruned from the domain of the
variable S(clear(bn),stack(bn−1, bn)). The only remaining action is then Start, and
we have then

S
(
clear(bn),stack(bn−1, bn)

) = Start.

• For the second precondition of stack(bn−1, bn), i.e., holding(bn−1), the reasoning
is similar: first T (holding(bn−1),stack(bn−1, bn)) = 0 is inferred, and then since
holding(bn−1) can be produced only by pickup(bn−1) and the actions UNSTACKn−1,∗
which all have starting times greater than or equal to 2, it follows from T (p,a) 	=
T (a′) → S(p,a) 	= a′ with p = holding(bn−1), a = stack(bn−1, bn) and a′ ∈
UNSTACKn−1,∗, that all such actions a′ are pruned from D[S(holding(bn−1),

stack(bn−1, bn))], resulting in

S
(
holding(bn−1),stack(bn−1, bn)

) = pickup(bn−1)

and

InPlan
(
pickup(bn−1)

) = 1.
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• Furthermore, from the constraint S(p,a) = a′ → T (p,a) = T (a′) it is also inferred
that T (pickup(bn−1)) = 0, and from the precondition constraint

T (a) � T (p,a) + min
a′∈D[S(p,a)]

δ(a′, a)

and a = pickup(bn−1), T (p,a) = 0 is inferred for the two preconditions p of a:
clear(bn−1) and handempty. As a result, from the constraint T (p,a) 	= T (a′) →
S(p,a) 	= a′, all actions other than Start are pruned as possible supporters of
clear(bn−1) and handempty, from which it is inferred that

S
(
clear(bn−1),pickup(bn−1)

) = S
(
handempty,pickup(bn−1)

) = Start.

Step5: Addition of pickup(bn−2) to the plan.

. . . At this point a number of actions and causal links in the plan have been inferred with
no commitments made except for the bound B . In particular, due to the causal links going
into the actions pickup(bn−1) and stack(bn−1, bn) already fixed at the times t = 0 and
t = 1 respectively, and the fact that all actions a′ whether in the plan or not (except for
these two and Start), threat these causal links but cannot precede both actions, the starting
times T (a′) of such actions a′ are pushed to times t = 2 or higher. The result is that the
only supporters left for the preconditions clear(bn−1) and holding(bn−2) of the next stack
action in the sequence, a2 = stack(bn−2, bn−1), scheduled at time t = 3, end up being the
actions a1 = stack(bn−1, bn) at t = 1 and pickup(bn−2) at time t = 2 . . .

• The action stack(bn−2, bn−1) still has two open preconditions: holding(bn−2) and
clear(bn−1). The action stack(bn−1, bn) e-deletes holding(bn−2), and thus threats the
support variable S(holding(bn−2),stack(bn−2, bn−1)). But since it does not precede
stack(bn−2, bn−1) (all the times for the stackactions are already fixed), the first dis-
junct of the causal link constraint is enforced

T (a′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′) � T (p,a)

with p = holding(bn−2), a′ = stack(bn−1, bn) and a = stack(bn−2, bn−1) which
yields

T
(
holding(bn−2),stack(bn−2, bn−1)

)
� 2.

In turn from T (p,a) + mina′∈D[S(p,a)] δ(a′, a) � T (a) with p = holding(bn−2)

and a = stack(bn−2, bn−1), T (holding(bn−2),stack(bn−2, bn−1)) � 2 is inferred, and
therefore from the inequality above,

T
(
holding(bn−2),stack(bn−2, bn−1)

) = 2.

• The actions that can support the precondition holding(bn−2) of stack(bn−2, bn−1) are
pickup(bn−2) and the actions UNSTACKn−2,∗. However, the latter actions are ex-
cluded. Indeed, they all have as precondition the fact that bn−2 is on another block,
and the actions that can produce this precondition are the ones in STACKn−2,∗. How-
ever, these actions cannot precede the action stack(bn−1, bn), which is in the plan,
and hence must follow it because of the causal link constraint. Since the distance
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between stack(bn−1, bn) and the actions in STACKn−2,∗ is 1, the lower bound of the
starting time of these actions is increased to 3. As a consequence, the lower bound of
the actions in UNSTACKn−2,∗ is increased to 4, and this is why they cannot produce
the precondition holding(bn−2) for stack(bn−2, bn−1), and therefore

S
(
holding(bn−2),stack(bn−2, bn−1)

) = pickup(bn−2).

• The actions that can produce the other precondition clear(bn−1) of stack(bn−2, bn−1)

are either Start, or the actions in STACKn−1,∗ ∪ UNSTACK∗,n−1. As clear(bn−1) is
false before doing stack(bn−1, bn) and no action is left between stack(bn−1, bn) and
stack(bn−2, bn−1), the only possibility is

S
(
clear(bn−1),stack(bn−2, bn−1)

) = stack(bn−1, bn).

• The same kind of reasoning is made for the preconditions of pickup(bn−2), and there-
fore the support variables get the values

S
(
handempty,pickup(bn−2)

) = stack(bn−1, bn)

and

S
(
clear(bn−2),pickup(bn−2)

) = Start.

Step6: Addition of all other pickupactions to the plan.

. . . the process repeats for all other stack actions in the sequence until all actions have their
start times and supporters fixed and no flaw in the plan is left.

• Following the same process, the actions in UNSTACKn−k,∗ with k � 3 are excluded
from the domain of the support variables S(holding(bn−k), stack(bn−k, bn−k−1)),
leaving as the only possible choice the actions pickup(bn−k) whose correct starting
times are also inferred. The preconditions of the actions pickup(bn−k) are found in
the same way.

7. Experimental results

We consider next the experiments for comparing CPT with other optimal parallel and
temporal planners. The experiments have been obtained using a Pentium IV machine run-
ning at 2.8 Ghz, with 1 Gb of RAM, under Linux, and a time limit of one hour for each
problem. The planners are:

• CPT: our temporal planner, a version that slightly improves the version entered at the
4th International Planning Competition (Optimal Track; see [11]) with no canonicity
restrictions,6

6 While CPT was entered at the 4th IPC, CPT does not adhere completely to the PDDL2.1 semantics [14] but
rather follows the simpler semantics for temporal planning in [40]. In the former, plans with smaller makespans
may result as interfering actions are allowed to overlap in certain cases. See [14] for details.
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• BLACKBOX: the SAT-based parallel planner described in [23] with the CHAFF SAT
solver [34],

• SATPLAN04: the new implementation of BLACKBOX with the SIEGE SAT solver, as it
was entered at the 4th International Planning Competition,

• IPP: the GRAPHPLAN-based parallel planner described in [24], and
• TP4’04: the new implementation of the temporal planner described in [17], that was

also entered at the 4th IPC.

We evaluated the two temporal planners CPT and TP4’04 over temporal domains, and
all temporal and parallel planners over parallel domains. The domains and problems are
Blocks World (5 standard instances, 50 instances from IPC2), Logistics (8 standard in-
stances, 50 instances from IPC2), Miconic [25] (50 instances from IPC2), and four domains
created for IPC3: Depots, DriverLog, Satellite and ZenoTravel. These last four domains are
used in both parallel and temporal settings. Details on IPC2 and IPC3 can be found in [1]
and [30]. We report results over many domains and instances both for assessing the pro-
posed planner reliably and as a reference for other researchers.

Tables 2–5 compare the planners over the parallel domains, while Table 6 compares CPT

and TP4’04 over the temporal domains. The times in all cases include preprocessing. Times
reported as 0.00 mean that they were solved in less than 0.01 seconds. The tables show
that CPT runtimes and coverage are similar to those of BLACKBOX and SATPLAN04 over
the parallel domains with the exception of Blocks World, where CPT does much better,
and Logistics and Miconic, where CPT does worse. CPT also seems to scale up much better
than IPP over all domains with the exception of the Miconic domain, where IPP does better.
Finally, CPT seems to dominate the temporal planner TP4’04 over all parallel and temporal
domains, expanding much fewer nodes. As discussed in [17], the problem with state-based
temporal planners such as TP4’04 is their branching factorwhich may be exponential in
the number of primitive actions in the domain. In CPT, the branching factor is two, and
after every branching decision, a powerful pruning mechanism is applied. While solutions
in such a case, may lay deeper in the search tree, pruning decisions have a chance then to
prune larger parts of the search space, and therefore, to be more effective.

The scatter plots in Figs. 1–5 summarize the information provided in these tables. The
first four figures summarize the results for parallel planning comparing CPT with BLACK-
BOX, SATPLAN04, IPP and TP4’04 respectively, while the last figure compares CPT with
TP4’04 over temporal domains. In these figures, dots represent for each problem, the run-
time of CPT (x-axis) in comparison with the runtime of the other planners (y-axis). Dots
above the diagonal indicate problems where CPT is faster, while dots below the diagonal in-
dicate problems where the other planners are faster. Likewise, problems on the right border
are unsolved by CPT, while problems on the top border are unsolved by the other planners.

The results shown in the tables and in the figures lend support to our main goal in the
development of CPT: an optimal temporal planner with good performance, able to approach
the performance of the best parallel planners when all actions have the same duration. The
key for this result is the combination in CPT of a POCL branching scheme suitable for
temporal planning, and a CP representation of partial plans that supports powerful pruning
and reasoning mechanisms such as those found in modern parallel planners.
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Table 2
Results for Blocks World

CPU time (sec.) Makespan

CPT BLACKBOX SATPLAN IPP TP4

bw-12step 0.10 0.15 0.53 0.01 0.17 12
bw-large.a 0.10 0.64 3.35 0.03 0.93 12
bw-large.b 1.02 10.14 181.61 1.33 593.85 18
bw-large.c 140.30 – – – – 28
bw-large.d – – – – – –

bw-ipc01 0.00 0.02 0.17 0.00 0.01 6
bw-ipc02 0.01 0.01 0.20 0.00 0.00 10
bw-ipc03 0.01 0.01 0.16 0.00 0.01 6
bw-ipc04 0.03 0.07 0.34 0.00 0.04 12
bw-ipc05 0.01 0.06 0.32 0.00 0.04 10
bw-ipc06 0.02 0.11 1.28 0.00 0.03 16
bw-ipc07 0.04 0.15 0.48 0.00 0.07 12
bw-ipc08 0.02 0.17 0.90 0.00 0.08 10
bw-ipc09 0.03 0.41 35.14 0.00 0.11 20
bw-ipc10 0.04 0.38 5.07 0.01 0.14 20
bw-ipc11 26.63 2.87 541.39 0.02 3.77 22
bw-ipc12 1.21 1.19 115.31 0.01 0.69 20
bw-ipc13 0.16 2.35 193.12 0.02 2.64 18
bw-ipc14 0.82 3.04 683.88 0.03 5.57 20
bw-ipc15 0.10 1.03 24.37 0.01 0.44 16
bw-ipc16 0.24 6.13 – 0.12 33.03 30
bw-ipc17 0.95 3.35 – 0.04 3.85 28
bw-ipc18 0.12 3.18 – 0.03 1.76 26
bw-ipc19 0.23 12.17 – 0.27 94.41 34
bw-ipc20 1018.47 53.48 – 10.31 – 32
bw-ipc21 16.51 19.93 – 0.71 261.37 34
bw-ipc22 – 75.89 – 9.43 – 32
bw-ipc23 – 283.26 – 390.26 – 30
bw-ipc24 1.11 36.89 – 3.97 2518.01 34
bw-ipc25 574.46 70.49 – 1.86 2936.43 34
bw-ipc26 5.86 39.30 – 0.89 413.27 34
bw-ipc27 0.82 119.58 – 477.50 – 42
bw-ipc28 6.43 198.49 – 281.91 – 44
bw-ipc29 – – – 195.42 – 38
bw-ipc30 – – – – – –
bw-ipc31 1434.88 – – – – 40
bw-ipc32 6.57 – – – – 52
bw-ipc33 – – – – – –
bw-ipc34 1706.01 – – – – 52
bw-ipc35 – – – – – –
bw-ipc36 – – – – – –
bw-ipc37 – – – – – –
bw-ipc38 – – – – – –
bw-ipc39 34.15 – – – – 62
bw-ipc40 358.65 – – – – 58
bw-ipc41 – – – – – –
bw-ipc42 170.45 – – – – 72

(continued on next page)
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Table 2 (continued)

CPU time (sec.) Makespan

CPT BLACKBOX SATPLAN IPP TP4

bw-ipc43 16.86 – – – – 78
bw-ipc44 1563.39 – – – – 68
bw-ipc45 – – – – – –
bw-ipc46 – – – – – –
bw-ipc47 – – – – – –
bw-ipc48 – – – – – –
bw-ipc49 – – – – – –
bw-ipc50 – – – – – –

Table 3
Results for Logistics

CPU time (sec.) Makespan

CPT BLACKBOX SATPLAN IPP TP4

log.easy 0.02 0.05 0.19 0.00 0.48 9
rocket.a 0.11 0.22 1.91 4.54 – 7
rocket.b 0.08 0.26 2.68 6.92 – 7
log.a 0.15 0.26 1.05 450.47 – 11
log.b 1.85 0.52 57.92 1190.54 – 13
log.c 2.22 0.85 36.18 – – 13
log.d 2.82 2.12 100.45 – – 14
log.d3 1.25 1.69 27.83 – – 13
log.d1 – 2.77 353.34 – – 17

log-ipc01 0.02 0.04 0.14 0.00 0.06 9
log-ipc02 0.02 0.04 0.16 0.00 0.07 9
log-ipc03 0.02 0.04 0.17 0.00 0.06 9
log-ipc04 0.02 0.04 0.17 0.00 0.08 9
log-ipc05 0.02 0.04 0.16 0.00 0.10 9
log-ipc06 0.01 0.01 0.11 0.00 0.06 3
log-ipc07 0.02 0.04 0.16 0.00 0.09 9
log-ipc08 0.02 0.04 0.18 0.00 0.89 9
log-ipc09 0.02 0.04 0.20 0.00 0.30 9
log-ipc10 0.09 0.17 0.35 1.32 789.17 12
log-ipc11 0.13 0.22 0.41 24.18 – 13
log-ipc12 0.07 0.15 0.25 0.28 218.13 11
log-ipc13 0.11 0.18 0.30 1.17 1712.18 12
log-ipc14 0.07 0.14 0.29 0.06 30.60 11
log-ipc15 0.07 0.11 0.22 0.02 2.18 10
log-ipc16 1.56 1.37 6.24 – – 15
log-ipc17 0.21 0.38 1.36 620.86 – 12
log-ipc18 0.43 0.54 1.42 – – 13
log-ipc19 3.06 1.24 9.94 – – 15
log-ipc20 0.22 0.48 1.25 – – 12
log-ipc21 11.39 1.16 8.93 – – 15
log-ipc22 51.12 2.78 222.94 – – 13
log-ipc23 2.60 2.14 200.84 – – 13
log-ipc24 2.36 1.51 72.50 – – 12

(continued on next page)



V. Vidal, H. Geffner / Artificial Intelligence 170 (2006) 298–335 325
Table 3 (continued)

CPU time (sec.) Makespan

CPT BLACKBOX SATPLAN IPP TP4

log-ipc25 2.56 2.67 160.74 – – 13
log-ipc26 2.50 5.56 182.85 – – 13
log-ipc27 29.54 1.91 74.16 – – 12
log-ipc28 6.28 6.88 319.49 – – 13
log-ipc29 – 10.45 436.39 – – 13
log-ipc30 1505.16 15.38 591.54 – – 14
log-ipc31 – 52.05 595.15 – – 14
log-ipc32 – 90.98 919.45 – – 15
log-ipc33 1298.66 6.20 326.12 – – 13
log-ipc34 – 271.41 885.38 – – 15
log-ipc35 – 26.46 496.10 – – 14
log-ipc36 – 845.25 924.73 – – 15
log-ipc37 – 3308.84 – – – 16
log-ipc38 – – – – – –
log-ipc39 – 84.66 1267.65 – – 14
log-ipc40 – – – – – –

Table 4
Results for Miconic

CPU time (sec.) Makespan

CPT BLACKBOX SATPLAN IPP TP4

miconic01 0.00 0.00 0.14 0.00 0.00 4
miconic02 0.00 0.00 0.14 0.00 0.00 3
miconic03 0.00 0.00 0.13 0.00 0.00 4
miconic04 0.00 0.00 0.13 0.00 0.00 4
miconic05 0.00 0.00 0.14 0.00 0.00 4
miconic06 0.00 0.01 0.16 0.00 0.00 6
miconic07 0.00 0.01 0.16 0.00 0.00 6
miconic08 0.00 0.01 0.15 0.00 0.00 6
miconic09 0.00 0.01 0.15 0.00 0.01 6
miconic10 0.00 0.01 0.16 0.00 0.00 6
miconic11 0.01 0.05 1.28 0.00 0.02 8
miconic12 0.01 0.07 26.91 0.00 0.03 10
miconic13 0.01 0.04 0.43 0.00 0.05 8
miconic14 0.01 0.06 11.73 0.00 0.02 9
miconic15 0.01 0.05 0.84 0.00 0.04 8
miconic16 0.02 0.34 228.80 0.00 3.94 12
miconic17 0.02 0.33 143.00 0.00 3.01 11
miconic18 0.11 0.88 444.54 0.00 88.08 14
miconic19 0.14 0.84 403.35 0.01 88.45 14
miconic20 0.18 0.87 459.46 0.00 129.61 14
miconic21 0.35 2.35 377.01 0.03 1054.36 14
miconic22 0.81 4.50 450.55 0.05 – 15
miconic23 0.05 0.51 107.62 0.00 1.52 10
miconic24 0.16 3.31 350.99 0.04 921.91 14
miconic25 0.04 3.79 574.59 0.03 – 16

(continued on next page)
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Table 4 (continued)

CPU time (sec.) Makespan

CPT BLACKBOX SATPLAN IPP TP4

miconic26 0.71 4.04 353.35 0.13 – 14
miconic27 0.08 5.12 438.61 0.11 – 15
miconic28 2.38 20.63 506.44 0.21 – 16
miconic29 2.63 17.19 549.54 0.14 – 16
miconic30 30.69 42.18 765.94 0.21 – 18
miconic31 6.89 69.74 808.73 0.88 – 18
miconic32 339.13 150.71 1254.80 1.27 – 20
miconic33 27.82 20.63 676.15 0.66 – 17
miconic34 45.48 33.91 697.31 0.86 – 17
miconic35 0.13 1149.07 1964.92 1.52 – 23
miconic36 8.02 398.61 1717.08 6.26 – 22
miconic37 – 1702.56 – 6.76 – 23
miconic38 958.34 148.81 1273.84 5.44 – 20
miconic39 – 1802.74 2173.08 7.08 – 24
miconic40 – 504.42 1598.66 6.53 – 22
miconic41 – – – 34.64 – 26
miconic42 28.24 2240.95 – 29.55 – 24
miconic43 0.32 2317.58 – 34.50 – 24
miconic44 3110.23 – – 34.02 – 28
miconic45 – 587.12 – 35.49 – 21
miconic46 – – – 166.68 – 27
miconic47 – – – 146.43 – 25
miconic48 – 2425.37 – 134.89 – 24
miconic49 3282.31 – – 162.68 – 28
miconic50 – – – 149.78 – 26

Fig. 1. Performance of CPT vs. BLACKBOX over parallel domains.
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Table 5
Results for four parallel domains from IPC3

CPU time (sec.) Makespan

CPT BLACKBOX SATPLAN IPP TP4

depots01 0.02 0.02 0.14 0.00 0.08 5
depots02 0.11 0.11 0.34 0.01 1.45 8
depots03 0.46 0.67 68.68 0.20 143.38 12
depots04 3.32 2.14 353.33 0.38 – 14
depots05 – 349.22 – – – 20
depots06 – – – – – –

driver01 0.02 0.02 0.15 0.00 0.08 6
driver02 0.03 0.14 1.10 0.02 2.03 9
driver03 0.03 0.06 0.20 0.01 0.15 7
driver04 0.04 0.12 0.38 0.07 4.54 7
driver05 0.06 0.17 0.44 0.75 69.01 8
driver06 0.07 0.06 0.17 0.01 2.37 5
driver07 0.09 0.14 0.21 0.08 32.79 6
driver08 0.10 0.23 0.32 1.92 168.21 7
driver09 0.34 0.88 32.67 5.73 584.05 10
driver10 0.31 0.56 7.02 9.65 2113.08 7
driver11 0.92 1.52 23.32 1.27 72.06 9
driver12 – 1186.49 – – – 16

satellite01 0.01 0.05 10.23 0.00 0.02 8
satellite02 0.09 0.84 265.85 0.01 12.38 12
satellite03 0.04 0.15 4.99 0.01 0.36 6
satellite04 0.18 0.78 129.91 4.10 – 10
satellite05 0.74 0.85 52.33 79.03 – 7
satellite06 0.18 0.75 25.25 40.96 – 8
satellite07 0.63 1.02 26.00 571.25 – 6
satellite08 46.59 133.79 295.17 – – 8
satellite09 3.84 2.62 39.01 – – 6
satellite10 96.44 24.10 193.68 – – 8
satellite11 11.53 13.90 172.87 – – 8
satellite12 – – – – – –

zeno01 0.01 0.01 0.12 0.00 0.05 1
zeno02 0.02 0.08 0.18 0.00 0.06 5
zeno03 0.07 0.20 0.28 0.01 0.30 5
zeno04 0.06 0.16 0.22 0.00 0.63 5
zeno05 0.15 0.27 0.37 0.01 1.49 5
zeno06 0.19 0.36 0.91 0.02 40.72 5
zeno07 0.22 0.39 0.54 0.02 266.24 6
zeno08 1.28 0.89 5.50 0.12 2088.00 5
zeno09 1.58 1.44 45.62 0.38 – 6
zeno10 5.42 2.28 102.21 123.58 – 6
zeno11 4.36 3.13 140.87 17.55 – 6
zeno12 4.67 6.32 201.85 743.63 – 6
zeno13 56.03 6.44 353.82 – – 7
zeno14 – – – – – –
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Fig. 2. Performance of CPT vs. SATPLAN04 over parallel domains.

Fig. 3. Performance of CPT vs. IPP over parallel domains.

8. Discussion

We have developed a domain-independent optimal POCL temporal planner based on
constraint programming that integrates existing lower bounds with novel representations
and propagation rules that manage to prune the search space considerably. The key nov-
elty in the planner and the source of its power, is the ability to represent and reason about
supports, precedences, and causal links involving actions that are not in the plan. The ex-
periments show that the resulting planner is faster than current optimal temporal planners
and is competitive with the best parallel planners in the special case in which actions have
all the same duration. The formulation extends the one in [45] that assumes that no ground
action in the domain occurs more than once in the plan. This canonicity restriction is re-
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Fig. 4. Performance of CPT vs. TP4’04 over parallel domains.

Fig. 5. Performance of CPT vs. TP4’04 over temporal domains.

moved by establishing a distinction between action typesand action tokens, the latter being
created dynamically during the search. The resulting scheme can be understood as provid-
ing a lazy implementation of an action domain with an infinite collection of action tokens or
instances. Indeed, the action types are used as place holders for the information that is com-
mon to all the action instances of that type that have not yet made it into the plan. The move
from canonical to general planning where ground actions can be repeated many times, in-
volves however an overhead. In Tables 7–9, we actually compare the general CPT planner
with the CPT planner with the canonicity restriction. The latter planner, that we refer to as
CPT-CA in the tables, is a planner that is optimal only when some of the optimal plans are
canonical. This happens automatically in domains like Blocks World for example, where
all instances are canonical in this sense (they never require repeating the same ground
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Table 6
Results for four temporal domains from IPC3

CPU time (sec.) Makespan CPU time (sec.) Makespan

CPT TP404 CPT TP404

driver01 0.02 4.18 91 depots01 0.02 0.08 28
driver02 – 365.89 92 depots02 0.50 19.73 36
driver03 0.03 0.18 40 depots03 – – –
driver04 – – – depots04 – – –
driver05 40.67 – 51 depots05 – – –
driver06 – – – depots06 – – –

driver07 0.43 45.52 40 zeno01 0.02 0.07 173
driver08 – – – zeno02 0.07 0.28 592
driver09 – – – zeno03 0.09 0.43 280
driver10 6.16 – 38 zeno04 1.09 – 522
driver11 – – – zeno05 0.44 30.54 400
driver12 – – – zeno06 0.35 4.87 323

satellite01 0.01 0.01 46 zeno07 3.07 – 665
satellite02 1.19 466.63 70 zeno08 17.52 – 522
satellite03 0.06 1.17 34 zeno09 90.64 – 522
satellite04 0.82 – 58 zeno10 82.62 – 453
satellite05 1.55 – 36 zeno11 7.77 – 423
satellite06 0.28 – 46 zeno12 – – –
satellite07 1.10 – 34 zeno13 – – –
satellite08 – – – zeno14 – – –

satellite09 6.21 – 34
satellite10 1897.84 – 43
satellite11 42.32 – 46
satellite12 – – –

action twice). In general, however, when this assumption is not true, CPT-CA may result
in non-optimal plans (non-optimality), or may even find no plan at all (incompleteness).
Interestingly by looking at the tables, we only find four examples of non-optimality (log-
ipc09, log-ipc10, depots03 and driver02), and no example of incompleteness;
indicating that while not valid, the canonicity restriction is often reasonable. At the same
time, since the consideration of non-canonical plans involves an overhead, the canonical
planner CPT-CA ends up actually solving more problems in the given time window (1 hour)
than the general CPT planner. This is most prominent in the temporal DriverLog instances
where the former solves 11 out of the 12 instances, while the latter solves only 5, but it is
also true for Blocks World and Logistics. In addition, in all instances, with the four excep-
tions mentioned above, when both CPT and CPT-CA find a plan, CPT-CA finds a plan that is
as good in less time. It remains an open challenge to determine the conditions under which
restrictions like canonicity or suitable variations (e.g., that certain actions are ‘canonical’
but not others) can be detected and exploited. In the future, we would also like to analyze in
further detail the constraints that are most critical in pruning the search space in CPT, and
whether this pruning power can be further extended by explicating additional constraints
in the formulation such as those encoding ‘landmark’ information [38].
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Table 7
General planning in CPT vs. Restricted canonical planning in CPT over Blocks World and Logistics

Blocks World CPU time (sec.) Makespan Logistics CPU time (sec.) Makespan

CPT CPT-CA CPT CPT-CA CPT CPT-CA CPT CPT-CA

bw-12step 0.10 0.08 12 12 log.easy 0.02 0.02 9 9
bw-large.a 0.10 0.09 12 12 rocket.a 0.11 0.09 7 7
bw-large.b 1.02 0.98 18 18 rocket.b 0.08 0.06 7 7
bw-large.c 140.30 129.93 28 28 log.a 0.15 0.15 11 11
bw-large.d – – – – log.b 1.85 0.38 13 13

bw-ipc01 0.00 0.00 6 6 log.c 2.22 0.53 13 13
bw-ipc02 0.01 0.01 10 10 log.d 2.82 1.33 14 14
bw-ipc03 0.01 0.01 6 6 log.d3 1.25 1.22 13 13
bw-ipc04 0.03 0.02 12 12 log.d1 – 121.12 – 17

bw-ipc05 0.01 0.01 10 10 log-ipc01 0.02 0.02 9 9
bw-ipc06 0.02 0.02 16 16 log-ipc02 0.02 0.02 9 9
bw-ipc07 0.04 0.03 12 12 log-ipc03 0.02 0.02 9 9
bw-ipc08 0.02 0.02 10 10 log-ipc04 0.02 0.02 9 9
bw-ipc09 0.03 0.03 20 20 log-ipc05 0.02 0.01 9 9
bw-ipc10 0.04 0.04 20 20 log-ipc06 0.01 0.01 3 3
bw-ipc11 26.63 3.04 22 22 log-ipc07 0.02 0.02 9 9
bw-ipc12 1.21 0.31 20 20 log-ipc08 0.02 0.02 9 9
bw-ipc13 0.16 0.10 18 18 log-ipc09 0.02 0.02 9 11
bw-ipc14 0.82 0.30 20 20 log-ipc10 0.09 0.09 12 13
bw-ipc15 0.10 0.09 16 16 log-ipc11 0.13 0.08 13 13
bw-ipc16 0.24 0.19 30 30 log-ipc12 0.07 0.06 11 11
bw-ipc17 0.95 0.49 28 28 log-ipc13 0.11 0.08 12 12
bw-ipc18 0.12 0.11 26 26 log-ipc14 0.07 0.06 11 11
bw-ipc19 0.23 0.22 34 34 log-ipc15 0.07 0.07 10 10
bw-ipc20 1018.47 88.93 32 32 log-ipc16 1.56 0.25 15 15
bw-ipc21 16.51 4.04 34 34 log-ipc17 0.21 0.18 12 12
bw-ipc22 – 1041.98 – 32 log-ipc18 0.43 0.23 13 13
bw-ipc23 – 2898.88 – 30 log-ipc19 3.06 0.28 15 15
bw-ipc24 1.11 0.56 34 34 log-ipc20 0.22 0.19 12 12
bw-ipc25 574.46 94.27 34 34 log-ipc21 11.39 0.46 15 15
bw-ipc26 5.86 1.82 34 34 log-ipc22 51.12 5.12 13 13
bw-ipc27 0.82 0.79 42 42 log-ipc23 2.60 1.10 13 13
bw-ipc28 6.43 1.60 44 44 log-ipc24 2.36 1.50 12 12
bw-ipc29 – 1672.96 – 38 log-ipc25 2.56 1.16 13 13
bw-ipc30 – – – – log-ipc26 2.50 1.16 13 13
bw-ipc31 1434.88 554.87 40 40 log-ipc27 29.54 7.57 12 12
bw-ipc32 6.57 2.91 52 52 log-ipc28 6.28 3.57 13 13
bw-ipc33 – – – – log-ipc29 – – – –
bw-ipc34 1706.01 654.64 52 52 log-ipc30 1505.16 10.64 14 14
bw-ipc35 – – – – log-ipc31 – – – –
bw-ipc36 – – – – log-ipc32 – 507.39 – 15
bw-ipc37 – – – – log-ipc33 1298.66 146.18 13 13
bw-ipc38 – – – – log-ipc34 – 34.80 – 15
bw-ipc39 34.15 8.93 62 62 log-ipc35 – 140.01 – 14
bw-ipc40 358.65 257.16 58 58 log-ipc36 – – – –
bw-ipc41 – – – – log-ipc37 – – – –
bw-ipc42 170.45 20.23 72 72 log-ipc38 – – – –

(continued on next page)
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Table 7 (continued)

Blocks World CPU time (sec.) Makespan Logistics CPU time (sec.) Makespan

CPT CPT-CA CPT CPT-CA CPT CPT-CA CPT CPT-CA

bw-ipc43 16.86 15.76 78 78 log-ipc39 – – – –
bw-ipc44 1563.39 249.01 68 68 log-ipc40 – – – –

bw-ipc45 – – – –
bw-ipc46 – – – –
bw-ipc47 – – – –
bw-ipc48 – – – –
bw-ipc49 – – – –
bw-ipc50 – – – –

Table 8
General planning in CPT vs. Restricted canonical planning in CPT over Miconic

CPU time (sec.) Makespan CPU time (sec.) Makespan

CPT CPT-CA CPT CPT-CA CPT CPT-CA CPT CPT-CA

miconic01 0.00 0.00 4 4 miconic26 0.71 0.68 14 14
miconic02 0.00 0.00 3 3 miconic27 0.08 0.07 15 15
miconic03 0.00 0.00 4 4 miconic28 2.38 2.26 16 16
miconic04 0.00 0.00 4 4 miconic29 2.63 2.58 16 16
miconic05 0.00 0.00 4 4 miconic30 30.69 28.71 18 18
miconic06 0.00 0.00 6 6 miconic31 6.89 6.49 18 18
miconic07 0.00 0.00 6 6 miconic32 339.13 328.26 20 20
miconic08 0.00 0.01 6 6 miconic33 27.82 26.39 17 17
miconic09 0.00 0.00 6 6 miconic34 45.48 43.06 17 17
miconic10 0.00 0.00 6 6 miconic35 0.13 0.12 23 23
miconic11 0.01 0.01 8 8 miconic36 8.02 7.51 22 22
miconic12 0.01 0.01 10 10 miconic37 – – – –
miconic13 0.01 0.01 8 8 miconic38 958.34 922.00 20 20
miconic14 0.01 0.01 9 9 miconic39 – – – –
miconic15 0.01 0.01 8 8 miconic40 – – – –
miconic16 0.02 0.01 12 12 miconic41 – – – –
miconic17 0.02 0.02 11 11 miconic42 28.24 26.53 24 24
miconic18 0.11 0.10 14 14 miconic43 0.32 0.32 24 24
miconic19 0.14 0.14 14 14 miconic44 3110.23 3089.62 28 28
miconic20 0.18 0.17 14 14 miconic45 – – – –
miconic21 0.35 0.32 14 14 miconic46 – – – –
miconic22 0.81 0.76 15 15 miconic47 – – – –
miconic23 0.05 0.04 10 10 miconic48 – – – –
miconic24 0.16 0.14 14 14 miconic49 3282.31 3212.65 28 28
miconic25 0.04 0.04 16 16 miconic50 – – – –
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Table 9
General planning in CPT vs. Restricted canonical planning in CPT over four parallel and temporal domains from
IPC3

Parallel domains Temporal domains

CPU time (sec.) Makespan CPU time (sec.) Makespan

CPT CPT-CA CPT CPT-CA CPT CPT-CA CPT CPT-CA
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driver02 0.03 0.07 9 10 – 355.68 – 92
driver03 0.03 0.03 7 7 0.03 0.03 40 40
driver04 0.04 0.03 7 7 – 29.28 – 52
driver05 0.06 0.05 8 8 40.67 0.52 51 51
driver06 0.07 0.07 5 5 – 46.33 – 52
driver07 0.09 0.08 6 6 0.43 0.22 40 40
driver08 0.10 0.10 7 7 – 2686.41 – 52
driver09 0.34 0.28 10 10 – 114.08 – 92
driver10 0.31 0.29 7 7 6.16 2.33 38 38
driver11 0.92 0.76 9 9 – 3365.36 – 65
driver12 – – – – – – – –
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zeno02 0.02 0.02 5 5 0.07 0.06 592 592
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