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Abstract
The problem of planning in the presence of sens-
ing has been addressed in recent years as a non-
deterministic search problem in belief space. In this
work, we use ideas advanced recently for compiling
conformant problems into classical ones for intro-
ducing a different approach where contingent prob-
lems P are mapped into non-deterministic prob-
lems X(P ) in state space. We also identify a con-
tingent width parameter, and show that for prob-
lems P with bounded contingent width, the transla-
tion is sound, polynomial, and complete. We then
solve X(P ) by using a relaxation X+(P ) that is
a classical planning problem. The formulation is
tested experimentally over contingent benchmarks
where it is shown to yield a planner that scales up
better than existing contingent planners.

1 Introduction
Contingent planning is concerned with the problem of achiev-
ing goals in the presence of incomplete information and sens-
ing actions [Peot and Smith, 1992; Pryor and Collins, 1996].
This is one of the most general problems considered in the
area of planning and one of the hardest [Haslum and Jon-
sson, 1999; Rintanen, 2004]. In the last few years, signif-
icant progress has been achieved resulting in a variety of
contingent planners that can solve large and non-trivial prob-
lems, usually by casting the contingent planning problem as a
non-deterministic (AND/OR) search problem in belief space
[Bonet and Geffner, 2000; Hoffmann and Brafman, 2005;
Bertoli et al., 2006; Bryce et al., 2006].

In this work, we introduce a different approach to contin-
gent planning that uses and extends ideas advanced recently
for compiling conformant problems into classical planning
problems [Palacios and Geffner, 2007]. In this approach, a
contingent problem P , which is a non-deterministic search
problem in belief space, is compiled into a non-deterministic
problem X(P ) in state space whose literals represent the be-
liefs over P . We assume that the problem P involves un-
certainty in the initial situation only and that actions are all
deterministic. In such a case, as we will see, a straightfor-
ward sound and complete compilation is feasible by tagging
each of the fluents L in P with the possible initial states of

P . This compilation, however, is linear in the number of pos-
sible initial states that is exponential in the number of flu-
ents. We show nonetheless that even in such cases, a sound,
complete, and polynomial translation X(P ) is possible, pro-
vided that the problem P has bounded contingent width, and
show that the contingent width of almost all existing bench-
marks is 1; a result that parallels the one reported by Palacios
and Geffner for conformant planning. We then show how the
non-deterministic but fully observable problem X(P ) can be
solved using a suitable relaxation X+(P ) that is a classical
planning problem.

The paper is organized as follows. We present the contin-
gent problem P , the conformant translation K(P ), the new
contingent translation X(P ), and the conditions under which
it is sound, complete and polynomial. We then introduce the
relaxation X+(P ) and a contingent planner CLG that uses
both X(P ) and X+(P ). We finally present empirical results
and a summary.

2 Contingent Problem P
We consider a planning language that extends Strips with con-
ditional effects, negation, an uncertain initial situation, and
sensing actions. More precisely, a contingent planning prob-
lem is a tuple P = 〈F,O, I, G〉 where F stands for the fluent
symbols, O for the actions, I is a set of clauses over F defin-
ing the initial situation,1 and G ⊆ F is the goal situation. A
normal action a has preconditions given by a set of fluent lit-
erals, and a set of conditional effects C → L where C is a
set of fluent literals and L is a literal. Sensing actions a un-
cover the truth value of a positive literal L and are denoted as
obs(L). Sensing actions may have preconditions but for sim-
plicity we assume that they do not have any other effects. We
refer to the conditional effects C → L of an action a as the
rules associated with a, and write them often as a : C → L.
We use ¬L to refer to the complement of L.

3 Conformant Translation K(P )
The translation K(P ) = KT,M (P ) for conformant problems
P due to P&G [Palacios and Geffner, 2007] involves two pa-
rameters: a set of tags T and a set of merges M . A tag t is a

1No closed world assumption about I is made throughout the
presentation, yet as it is standard, the actual planner assumes ¬L in
I if the positive literal L is not mentioned at all in I .



set (conjunction) of literals in P whose status in the initial sit-
uation I is not known, and a merge m ∈ M is a collection of
tags t1, . . . , tn that stands for the DNF formula t1 ∨ · · · ∨ tn.
Tags are assumed to represent consistent assumptions about
I , i.e. I 6|= ¬t, and merges, disjunction of assumptions that
are valid in I; i.e. I |= t1 ∨ · · · ∨ tn.

The fluents in KT,M (P ), for P = 〈F,O, I, G〉 are of the
form KL/t for each L ∈ F and t ∈ T , meaning that “it is
known that if t is true in the initial situation, L is true”. In
addition, KT,M (P ) includes extra actions, called merge ac-
tions, that allow the derivation of a literal KL (i.e. KL/t
with the “empty tag”, expressing that L is known uncondi-
tionally) when KL/t′ has been obtained for each tag t′ in a
merge m ∈ M . Formally,
Definition 1. For a conformant problem P = 〈F ,O,I ,G〉,
the classical problem KT,M (P ) = 〈F ′,O′,I ′,G′〉 is:

F ′ ={KL/t,K¬L/t | L ∈ F}
I ′ ={KL/t | if I |= t ⊃ L}
G′ ={KL | L ∈ G}
O′ ={a : KC/t → KL/t, a : ¬K¬C/t → ¬K¬L/t

| a : C → L in P} ∪ {
∧
t∈m

KL/t → KL | m ∈ ML}

with t ranging over T and with the preconditions of the ac-
tions a in KT,M (P ) including the literal KL if the precondi-
tions of a in P include the literal L.

The set M is taken to be collections ML of merges for each
literal L. When C = L1, . . . , Ln, the expressions KC/t
and ¬K¬C/t are abbreviations for KL1/t, . . . ,KLn/t
and ¬K¬L1/t, . . . ,¬K¬Ln/t respectively. Similarly, KL
stands for KL/t0 where t0 is the “empty tag”. The empty
tag is assumed in all sets T and is not mentioned explic-
itly. Notice that a rule a : C → L in P gets mapped into
“support rules” a : KC/t → KL/t and “cancellation rules”
a : ¬K¬C/t → ¬K¬L/t; the former “adds” KL/t when
the condition C is known in t, the latter undercuts the persis-
tence of K¬L/t except when (a literal in) C is known to be
false in t.

The translation KT,M (P ) is sound, meaning that the clas-
sical plans that solve KT,M (P ) yield valid conformant plans
for P that can be obtained by just dropping the merge ac-
tions. On the other hand, the complexity and completeness of
the translation depend on the choice of tags T and merges M .
The Ki(P ) translation, where i is a non-negative integer, is a
special case of the KT,M (P ) translation where the tags t are
restricted to contain at most i literals. Ki(P ) is exponential in
i and complete for problems with conformant width less than
or equal to i. The planner T0 feeds the K1(P ) translation
into the classical FF planner [Hoffmann and Nebel, 2001],
and was the winning entry in the Conformant Track of the
2006 IPC [Bonet and Givan, 2006].

4 Contingent Translation X(P )
The translation of a contingent problem P into an equivalent
classical problem P ′ is not possible as the problems have dif-
ferent solution form. The solution to a contingent problem P

is a contingent plan that can be regarded as a policy tree Π:
a tree T with a function A mapping the internal nodes n of
T into actions a(n) in P .2 Roughly, a node n in the tree has
two children when the action a = a(n) is a sensing action, so
that the different (complete) branches stand for the different
possible executions. A policy tree Π solves the problem P
when the executions associated with each of the branches in
Π are all feasible and end up in belief states where the goals
are true. The formalization of this notion is well known and
requires the specification of the belief state b(n) associated
with each of the nodes in the tree, that we omit for lack of
space [Bonet and Geffner, 2000].

Contingent problems P cannot be translated into classical
problems but can be translated into non-deterministic fully
observable problems X(P ): these are problems where the
states are observable but some actions have non-deterministic
effects. It is simple to notice that (strong) solutions to such
problems are also policy trees; the difference being that belief
states b(n) can be replaced by plain states s(n) over X(P ).

The translation X(P ) = XT,M (P ) can be defined as the
translation KT,M (P ′) of the conformant fragment P ′ of P
(i.e. P without the sensing actions) extended with two com-
ponents: a suitable encoding of the sensing actions, expressed
as non-deterministic actions, and two deductive rules ex-
pressed as actions that extend the conformant merges, reflect-
ing that tags may be inferred to be false when observations
are gathered. We will see that for suitable choices of tags and
merges, the translation XT,M (P ) can be shown to be com-
plete too.

The sensing actions obs(L) in the contingent problem P
become in X(P ) the non-deterministic actions

obs(L) : ¬KL ∧ ¬K¬L → KL |K¬L . (1)

These are physical actions that result into either KL or K¬L
when neither KL nor K¬L hold, thus capturing the effect of
observing the truth value of L at the knowledge-level [Petrick
and Bacchus, 2002].

The additional deductive rules encoded as actions with sin-
gle conditional effects are:

1. Contingent Merge:
∧

t∈m,m∈ML

(KL/t ∨K¬t) → KL

2. Tag Refutation: KL/t ∧K¬L → K¬t

Contingent Merge (CM) is a generalization that subsumes
the conformant Merge actions in the conformant translation
by replacing every literal KL/t by the disjunction KL/t ∨
K¬t. This is because in the contingent setting, for L to be
known, it suffices to have L true given the tags t that have not
been refuted by the observations. The tags t that are refuted
by the observations are obtained from the second rule, Tag
Refutation (TR), as the tags that predict a literal L which is
known to be false. In these rules, Kt and K¬t refer to new
atoms added to X(P ) = XT,M (P ) for all t ∈ T (except the
empty tag).

2Most contingent planners build graphs rather than trees, yet this
distinction is irrelevant from a theoretical point of view.



Definition 2. For a contingent problem P , XT,M (P ) is the
non-deterministic, fully observable problem given by transla-
tion KT,M (P ′) of the conformant fragment P ′ of P , extended
with the non-deterministic actions (1) and the deductive ac-
tions CM and TR.

As an example, consider a medical-like contingent prob-
lem P with I = {¬s}, G = {h}, actions a and b with effect h
and preconditions d and ¬d respectively, action c with effect
d → s, and the sensing action obs(s) with no preconditions.
A contingent plan for this problem is

Π = {c, obs(s), if true a else b}

that can be understood as a policy tree with two com-
plete branches with action/observation sequences π1 =
[c, o+(s), a] and π2 = [c, o−(s), b], where o+(x) and o−(x)
stand for the observations x and ¬x respectively. In the trans-
lation XT,M (P ) with tags t1 = {d} and t2 = {¬d}, and
merge m = {t1, t2} for d and ¬d, this plan would work
as follows. The action c in the first branch yields the lit-
eral K¬s/t2, while o+(s) yields the literal Ks. From TR,
K¬t2 follows, which along with Kd/t1 (that is initially true
and persists) permits to obtain Kd from CM for L = d, so
that action a can be applied and the goal Kh obtained. The
second branch works in a similar way.

The example shows that the solution tree Π for P solves
also the translation XT,M (P ) for suitable tags and merges,
provided that deductive actions (merges and tag refutations)
are interleaved. This is the basis for the notions of soundness
and completeness below.

5 Properties of X(P )

For convenience, we consider policy trees Π∗ for X(P )
where the labels a(n) associated with the internal nodes of
Π∗ can stand for an action a in P followed by a (possibly
empty) sequence of deductive actions (merges and tag refu-
tations). We write then a(n) = a∗ and prevent deductive
actions from appearing anywhere else in Π∗. Any policy tree
for X(P ) can be written in this way. With this notation, two
transformations on policies can be defined: dropping the de-
ductive actions from Π∗ replaces the “actions” a(n) = a∗ by
the actions a(n) = a over all nodes in Π∗, and vice versa,
adding deductive actions in a policy Π for P , replaces the
actions a(n) = a by a(n) = a∗ for suitable sequences a∗

headed by a. The soundness and completeness of X(P ) can
be then defined as follows:

Definition 3. A translation X(P ) is sound if for any policy
tree Π∗ that solves X(P ), the policy tree Π obtained from Π∗

by dropping the deductive actions solves P .

Definition 4. A translation X(P ) is complete if any policy
tree Π that solves P can be extended into a policy tree Π∗

that solves X(P ) by adding some deductive actions to Π.

The first result that can be established is soundness:

Theorem 5 (Soundness). The translation X(P ) is sound.

The conditions that ensure completeness are more subtle
and are considered below. A simple complete translation
however can be obtained from the general XT,M (P ) scheme

as in conformant planning, by letting the set of tags T rep-
resent the set S0 of all the possible initial states of P and by
having a single merge m for each precondition and goal literal
in P , m = S0. We call the resulting translation XS0(P ):
Theorem 6 (Completeness of XS0). The translation XS0(P )
is sound and complete.

This translation is exponential in the number of uncer-
tain fluents in the initial situation of P , in the worst case.
Still, where this number is small enough, the translation can
be quite effective. Before addressing how these non-deter-
ministic but fully-observable problems X(P ) are solved, we
consider complete translations that may be compact.

5.1 Covering Translations
As in P&G, the merges m = {t1, . . . , tn} that are needed
for completeness in X(P ) are the ones in which each tag ti
subsumes the clauses in I that are relevant to the precondition
and goal literals of P . Clearly, the merges m = S0 achieve
this, yet more compact merges will often do as well. We will
say that a merge m = {t1, . . . , tn} with tags ti all consistent
with I , satisfies a set of clauses C iff for each ti in m and
each clause c in C, there is at least one literal L′ in c entailed
by ti and I . For characterizing the set of clauses Co

I (L) that
are relevant to a given literal L, we assume like P&G that I
is in prime implicate form [Marquis, 2000], meaning that I
includes only the inclusion-minimal clauses it entails, along
with the tautologies L ∨ ¬L when neither L nor ¬L are in I .
Definition 7. For a literal L in P , with I in prime implicate
form, Co

I (L) is the set of non-unary clauses c ∈ I such that
each Li ∈ c is relevant to an observable literal L′ in O(L) or
to L.

The notion of relevance is the same as the one in P&G,3
and O(L) stands for a set of observables: literals L′ such that
either obs(L′) or obs(¬L′) is an action in P . The condition
for completeness can then be expressed as follows:
Definition 8. XT,M (P ) is a covering translation for a con-
tingent problem P if for each precondition and goal literal L
in P such that Co

I (L) is non-empty, M contains a merge m
that satisfies Co

I (L).
Theorem 9. Covering translations XT,M (P ) are complete.

The use of the set O(L) of observables in Definition 7 is
the main difference with the corresponding result for confor-
mant planning. This set can be taken to comprise the set of all
observables, yet a smaller set does as well: it suffices to take
O(L) to be the observables that may affect L,4 and this corre-
sponds to the unique minimal set of observables L′ that obey
the following condition: L′ is in O(L) if there is a clause c in
I with a literal L1 that is relevant to L′ and a literal L2 that is
relevant to L′′, where L′′ ∈ O(L) or L′′ = L.

3A literal L is relevant to L’ in P , written L −→ L′, if L = L′,
if L −→ L′′ and L′′ −→ L′, if a : C −→ L′ in P and L in C, or if
¬L −→ ¬L′.

4The literals that affect L in the contingent setting are not the
same as the literals that may affect L in the conformant setting,
which are fully characterized by the notion of relevance. Yet rel-
evance expresses “causal relevance” and in the contingent setting
there is “evidential relevance” as well.



As an illustration, consider the problem P with initial situ-
ation I = {xor(x1, . . . , xn)}, goal G = {y}, actions ai with
precondition xi and effect y, and sensing actions obs(xi),
with i = 1, . . . , n. The translation XT,M (P ) with tags
ti = {xi} and merges m = {t1, . . . , tn} for each precon-
dition xi can be shown to be covering, and hence complete.
Indeed, Co

I (L) for the goal L = y is empty (O(y) is empty),
while for the preconditions L = xi, Co

I (L) contains all the
prime implicates that follow from xor(x1, . . . , xn) (O(xi)
includes all the observables), all of which are satisfied by each
ti in m.

5.2 Width and Xi Translation
Covering translations require the translation of the CNF for-
mula Co

I (L) that encodes the uncertainty in I relevant to L,
into a DNF formula entailed by I (the merge for L) that satis-
fies Co

I (L). Such DNF formula can be computed as follows:
Definition 10. The cover c(C) of a set of clauses C given
an initial situation I , is the collection of all minimal sets of
literals S consistent with I such that S contains a literal of
each clause in C.

The cover c(C) satisfies C and can be computed in poly-
nomial time if |C| is bounded. From the completeness of
covering translations, it follows that a complete translation
XT,M (P ) can be constructed in polynomial time if the size
|Co

I (L)| for all preconditions and goals L in P is bounded.
Unfortunately, this condition rarely holds, yet there is a
weaker sufficient condition that does: namely, it is often pos-
sible to find a subset C of clauses that are either in Co

I (L) or
are tautologies L ∨ ¬L for L or ¬L mentioned in Co

I (L), we
call them Taut, such that c(C) satisfies Co

I (L). The contin-
gent width of the literal L is defined in terms of the cardinality
of such sets.
Definition 11. The contingent width of a literal L in P , writ-
ten w(L), is the size of the smallest (cardinality-wise) set of
clauses C in Co

I (L) ∪ Taut such that c(C) satisfies Co
I (L).

A consequence of this definition is that the width of a literal
lies in the interval 0 ≤ w(L) ≤ n, where n is the number of
fluents in P whose status in the initial situation is not known.
The width of a problem is the width of the precondition or the
goal literal with maximum width:
Definition 12 (Width). The contingent width of a contingent
problem P , written as w(P ), is w(P ) = maxL w(L), where
L ranges over the precondition and goal literals in P .

The translation Xi(P ) for a non-negative integer i is a spe-
cial case of the general translation XT,M (P ), that for a fixed
i, is sound, polynomial in i, and complete if w(P ) ≤ i.
Definition 13. The set of merges for a precondition or goal
literal L in Xi(P ) is empty if Co

I (L) is empty, else it contains
a single merge m = c(C) if C is a set of at most i clauses
in Co

I (L) ∪ Taut such that c(C) satisfies Co
I (L), and is the

collection of all such merges for each set C of i-clauses in
Co

I (L) ∪ Taut otherwise.
The tags in Xi(P ) are that ones appearing in the merges

along with the empty tag. The crucial property is that
Theorem 14. For a fixed i, the translation Xi(P ) is sound,
polynomial, and if w(P ) ≤ i, covering and complete.

The translation X(P ) above with I = {xor(x1, . . . , xn)}
is an instance of the X1(P ) translation. Like in conformant
planning, the contingent width of almost all contingent bench-
marks turns out to be 1, and hence for such problems the
X1(P ) translation is complete. It is not necessary however
for X1(P ) to be complete for being useful: if X1(P ) is solv-
able, it can produce a solution to P . The incompleteness of
X1(P ) just means that there is no guarantee that all solutions
to P can be obtained in this way.

6 Solving X(P )

The computational payoff of the translation X(P ) is that it
enables us to compute with states represented by sets of lit-
erals rather than with beliefs represented by sets of states.
Nonetheless, the solution of non-deterministic fully observ-
able problem like X(P ) is not trivial. Fortunately, however,
X(P ) is a problem of a special type that can be solved using
classical planning techniques. The key result is the following.
Let X+(P ) stand for the relaxation of X(P ) where deletes,
preconditions, and actions with non-deterministic effects are
dropped. X+(P ) is thus a classical planning problem.

Theorem 15. If X(P ) is a covering translation and Π∗ is a
policy tree that solves X(P ), then there is a classical plan
π for the relaxation X+(P ) that only uses the deterministic
action in Π∗.

That is, as in classical planning, we can use the relaxation
X+(P ) that can be solved in polynomial time to get estimates
of the size of the plans that are needed for solving X(P ).
The result applies to covering translations X(P ) but not to
arbitrary non-deterministic problems, which can be rendered
unsolvable when the non-deterministic actions are dropped.

In the CLG planner, the relaxation X+(P ) is strength-
ened in two ways. First, rather than using X+(P ), we use
an stronger relaxation X+(Pc) obtained from a problem Pc

that is equivalent to P and where each precondition L of an
action a in P is copied as a condition of all the effects as-
sociated with a. The result is that the “wishful thinking” in
X+(Pc) about the applicability of actions does not translate
into “wishful thinking” about the action effects. This is cru-
cial for the heuristics obtained from X+(Pc) to be well in-
formed. In Contingent-FF, a similar transformation is used
where preconditions in P are moved in as conditions [Hoff-
mann and Brafman, 2005].

Second, rather than making the preconditions of an action a
in X+(Pc) empty, we add literals ML for each precondition
L of a in P expressing roughly that L must be known in some
branch of the contingent plan. The ML literals are added by
a suitable relaxation of the sensing actions obs(L)

obs(L) : ¬KL ∧ ¬K¬L → ML ∧M¬L ∧ o(L) (2)

that makes both ML and M¬L true after observing the truth
value of L, and by a set of deductive actions similar to the
ones used for the KL literals:

1. M-CM
∧

t′∈m,t′ 6=t M¬t′ → Mt

2. M-TR KL/t ∧ o(L) → M¬t

3. M-K: KL → ML



with o(L) representing an atom that is true when the action
obs(L) has been done. Moreover, for each a in P with effects
a : L1, L2, . . . → L, the rule a : ML1,ML2, . . . → ML is
added as well.

The classical planning problem that results from these ex-
tensions is what we call the heuristic model H(P ):
Definition 16. H(P ) is the classical planning problem given
by the relaxation X+(Pc) extended with the ML precondi-
tions, the encoding (2) of the sensing actions, the actions
M-CM, M-TR, and M-K, and the rules a : MC → ML
for rules a : C → L in P .

Notice that the sensing actions obs(L) in the form (2) are
part of this classical model H(P ) where they are needed for
achieving the ML preconditions of other actions. The ML
literals in the model H(P ) arise from the observations or the
KL literals, and get propagated by the M actions and rules.

As an illustration of the heuristic model, if a is an ac-
tion with precondition L and effect L1 → L2 in P , then a
will be an action in H(P ) with precondition ML and effects
ML1 → ML2 and KL/t,KL1/t → KL2/t for all tags t in
H(P ).

7 The CLG Planner
The Closed-Loop Greedy (CLG) planner uses the X1(P )
translation, called now the execution model, for keeping track
of beliefs, and the heuristic model H(P ) for selecting the
actions to do next in closed-loop fashion. Starting with the
initial state s of X(P ) = X1(P ), an action sequence π is
selected for application in s, and the loop resumes from the
state s′ that results, until s′ is a goal state in X(P ). The ac-
tion sequence π is obtained using a modified version of the
classical FF planner. In FF, a single enforced hill climbing
(EHC) step is a local search that results in an action sequence
π that maps a state s into a state s′ with a better heuristic
value hFF. In this local search, the classical model is used for
doing the state progression, and its delete-relaxation for com-
puting the relaxed plans. In CLG, the same search strategy
is adopted, with the execution model X(P ) used for the pro-
gression, and the heuristic model H(P ) used for computing
the relaxed plans. In addition, in order to avoid the consider-
ation of non-deterministic actions in the local search, when-
ever a “local plan” π that ends in a sensing action obs(L) is
being considered, the action sequence π is returned without
further evaluation. Notice that for an action to be considered
into the local plan, the action must have been found to be
“helpful” according to FF’s criterion.

The CLG planner can be used on-line or off-line. In the
first case, the non-deterministic actions obs(L) in X(P ) are
applied by selecting one of outcomes randomly; in the sec-
ond, both outcomes are considered. In both cases, CLG is in-
voked recursively on the resulting states. The on-line mode is
used for capturing single executions, while the off-line mode
is used for constructing full contingent plans.

CLG is implemented on top of a revised version of FF
that loads a single PDDL file where convenient flags are used
for distinguishing the X(P ) and H(P ) models. In addition,
when feeding a state s into H(P ) for computing a relaxed
plan, the state s is extended with the ML literals (ML is

added to s iff KL is in s), and similarly, after applying each
action sequence π in X(P ), the resulting state s′ is closed
under the deductive K-actions. In CLG, a few other M and
K “deductive” actions are included, such as one that exploits
static disjunctions L1 ∨ · · · ∨Ln in P for deriving KLi from
K¬Lj for all other literals Lj 6= Li.

8 Experimental Results
We tested CLG over a broad range of problems comparing
it with Contingent-FF and Pond 2.2 [Bryce et al., 2006]. We
used Contingent-FF with two options (with or without helpful
actions), reporting the best option for each instance. Pond
was run with the A∗ search algorithm. The experiments are
obtained on a Linux machine running at 2.33 GHz with 2Gb
of RAM with a cutoff of 45 mn or 1.8Gb of memory.

Some of the benchmarks are taken from the Contingent-
FF distribution, like ebtcs, elog, medpks, and unix; others are
more challenging problems from our own: cballs-n-x, about
disposing of x balls with unknown location and colour into
boxes according to their colour; doors-n, about moving in a
n × n grid with hidden doors, localize-n, about robot local-
ization in a known map, and wumpus-n, a variation of the
Wumpus world. Last, clog is a variation of elog where all ac-
tion conditions have been moved out as preconditions. In this
suite of problems, only two domains have contingent width
greater than 1: cballs, and wumpus.5

Contingent FF Pond CLG
problem time #acts time #acts time #acts
ebtcs-50 11,96 99 6,02 99 9,37 149
ebtcs-70 69,66 139 29,82 139 34,37 209
elog-7 0,06 223 1,10 212 0,18 210
eloghuge M M 240,14 38894
medpks-70 1098,44 140 T 9,89 141
medpks-99 T T 28,77 199
unix-2 0,09 48 2,18 48 0,57 50
unix-4 222,65 238 M 120,72 240
cballs-4-1 0,27 277 0,98 102 0,35 295
cballs-4-2 35,88 18739 40,92 1897 18,83 20050
cballs-4-3 T 1063,11 28008 1537,99 1136920
cballs-10-1 T M 415,73 4445
cballs-10-2 T M T
localize-5 9,8 188 T 0,72 137
localize-7 MC T 3,80 314
localize-9 MC T 17,96 602
localize-11 MC T M
clog-7 E 1,12 212 0,17 210
clog-huge E M 157,94 37718
doors-7 E 21,48 2159 10,60 2153
doors-9 E 1432,34 44082 1042,96 46024
doors-11 E T T
wumpus-5 E 5,58 587 1,76 732
wumpus-7 E 703,54 11673 89,32 10681
wumpus-10 E M T

Table 1: Full Contingent Plans: Contingent-FF vs Pond vs CLG.
Figures shown are total times in seconds, and total number of actions
in solution. ’M’, ’T’, ’MC’ and ’E’ refer to memory out, time out,
too many clauses, and buggy response, respectively.

Table 1 displays the ability of CLG to build full contingent
plans which compares favorably with the other two planners.
Times reported stand for total time, and in the case of CLG,

5The planner and problem encodings are available at
http://www.upf.edu/pdi/dtecn/alexandre.albore/clg.html



they include the translation time. The quality of the plans ap-
pears to be comparable (except for cballs). Domains marked
with an ’E’, are reported as unsolvable by Contingent-FF
without any search. After checking with Hoffmann and Braf-
man, it appears that this is due to a bug that results from sim-
plifications made in Contingent-FF that are not easy to fix.

CLG in Execution Mode
Translation Search Time #acts ratio

problem time size avg / max avg / max n ÷ a
ebtcs-70 7,7 12,9 0,62 / 3,48 12,5 / 71 1,0
elog-huge 1,1 1,7 0,63 / 1,43 44,25 / 59 1,8
medpks-99 13,7 21,6 0,54 / 3,30 15,1 / 100 1,0
medpks-150 48,7 65,0 4,26 / 28,60 20,8 / 150 1,0
unix-4 27,9 87,2 10,88 / 70,03 27,0 / 181 1,9
cballs-9-1 20,9 16,5 1,21 / 7,80 33,7 / 197 1,6
cballs-9-2 56,4 33,7 4,84 / 25,70 57,1 / 288 1,6
cballs-9-3 113,7 51,4 46,26 / 122,19 76,3 / 367 1,7
clog-huge 1,0 1,6 0,44 / 0,71 48,2 / 69 2,6
doors-9 6,0 8,1 0,72 / 1,46 34,2 / 80 1,1
doors-11 19,4 20,0 2,58 / 6,37 42,8 / 120 1,1
doors-13 52,4 44,7 6,78 / 20,68 53,0 / 178 1,1
doors-15 127,5 90,2 MP
localize-9 4,6 8,9 0,37 / 0,60 21,3 / 34 1,0
localize-11 12,1 20,4 M
wumpus-7 2,4 4,5 0,42 / 0,56 38,5 / 46 1,6
wumpus-10 12,1 16,8 3,26 / 5,59 57,5 / 86 1,8
wumpus-15 101,1 80,7 M

Table 2: CLG in Execution Mode: Averages over 50 samples. Fig-
ures shown are time and size of translation, avg and max search time
for execution, avg and max number of actions in execution, and ratio
of nodes per actions executed in local EHC search. ’M’ stands for
memory out, and ’MP’ for too many predicates. Times in seconds.

Table 2 shows average results for CLG used in execution
mode over a sample of 50 random executions for each prob-
lem. The first two columns of Table 2 show the time con-
sumed in the translation from P into X(P ) and H(P ), as
well as the size of the resulting PDDL file in MBytes. All
the executions end up in the goal with the number of actions
shown in the fourth column. The last column shows how fo-
cused is the search for the next action to apply, and more pre-
cisely, the number of nodes expanded in the local EHC search
vs. the number of actions executed. Indeed, a ratio of one
means a very focused search. The results show that CLG in
execution mode can solve problems for which building a full
contingent plan is not feasible due to its size. For example,
the largest door instance solved in off-line mode is doors-9
that results in a policy tree with more than 46 000 actions; in
on-line mode CLG solves doors-13 that is much larger. The
same is true for other domains like cballs and wumpus.

9 Discussion
We have extended the translation-based approached to con-
formant planning introduced by Palacios and Geffner, to plan-
ning with sensing. In both settings, the translation maps
search problems in belief space into search problems in state
space with complete translations being exponential in a width
parameter that is 1 for most benchmarks. We have also tested
these ideas empirically by formulating a contingent planner
CLG that uses the new translation along with a suitable relax-
ation, and have found that the planner scales up better than
existing contingent planners, and that when used in on-line

mode, it can scale up to problems for which the construction
of full contingent plans is not feasible. Two advantages of the
translation-based approach are that it results in compact be-
lief representations that are often complete, and classical plan
relaxations that provide useful heuristics.
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