An Algorithm better than AO*?

Blai Bonet Universidad Simón Bolívar Caracas, Venezuela

Héctor Geffner ICREA and Universitat Pompeu Fabra Barcelona, Spain

7/2005

Motivation

- Heuristic Search methods can be efficient but lack common foundation: IDA*, AO*, Alpha-Beta, ...
- **Dynamic Programming** methods such as **Value Iteration** are general but not as efficient
- Question: can we the get the best of both; i.e., generality and efficiency?
- **Answer** is **yes**, combining their key ideas:

Admissible Heuristics (Lower Bounds) **Learning** (Value Updates as in LRTA*, RTDP, etc)

What does proposed integration give us?

An algorithm schema, called LDFS, that is simple, general, and efficient:

• **simple** because it can be expressed in a few lines of code; indeed

LDFS = Depth First Search + Learning

- **general** because it handles many models: OR Graphs (IDA*), AND/OR Graphs (AO*), Game Trees (Alpha-Beta), MDPs, etc.
- efficient because it reduces to state-of-the-art algorithms in many of these models, while in others, yields new competitive algorithms; e.g.

$$LDFS = \begin{cases} IDA^* + TT & for OR-Graphs \\ MTD(-\infty) & for Game Trees \end{cases}$$

We also show that LDFS better than AO* over Max AND/OR Graphs . . .

What does proposed integration give us? (cont'd)

- Like LRTA*, RTDP, and LAO*, LDFS combines lower bounds with learning, but motivation and goals are slightly different
- By accounting for and generalizing **existing algorithms**, we aim to uncover the **three key computational ideas** that underlie them all so that **nothing else is left out**. These ideas are:

Depth First Search Lower Bounds Learning

• It is also useful to know that, say, new MDP algorithm, reduces to well-known and tested algorithms when applied **OR-Graphs** or **Game Trees**

Models

- 1. a discrete and finite states space S,
- 2. an initial state $s_0 \in S$,
- 3. a non-empty set of terminal states $S_T \subseteq S$,
- 4. actions $A(s) \subseteq A$ applicable in each non-terminal state,
- 5. a function that maps states and actions into *sets* of states $F(a,s) \subseteq S$,
- 6. action costs c(a, s) for non-terminal states s, and
- 7. terminal costs $c_T(s)$ for terminal states.
- Deterministic: |F(a,s)| = 1,
- Non-Deterministic: $|F(a,s)| \ge 1$,
- MDPs: probabilities $P_a(s'|s)$ for $s' \in F(s, a)$ that add up to 1 . . .

Solutions

(Optimal) Solutions can all be expressed in terms of value function V satisfying **Bellman** equation:

$$V(s) = \begin{cases} c_T(s) & \text{if } s \text{ is terminal} \\ \min_{a \in A(s)} Q_V(a, s) & \text{otherwise} \end{cases}$$

where $Q_V(a, s)$ stands for the cost-to-go value defined as:

$$\begin{array}{ll} c(a,s) + V(s'), \ s' \in F(a,s) & \text{for } O \\ c(a,s) + \max_{s' \in F(a,s)} V(s') & \text{for } N \\ c(a,s) + \sum_{s' \in F(a,s)} V(s') & \text{for } N \\ c(a,s) + \sum_{s' \in F(a,s)} P_a(s'|s) V(s') & \text{for } N \\ \max_{s' \in F(a,s)} V(s') & \text{for } O \end{array}$$

for OR GRAPHS for MAX AND/OR GRAPHS for ADD AND/OR GRAPHS for MDPS for GAME TREES

A policy (solution) π maps states into actions, must be closed around s_0 , and is optimal if $\pi(s) = \operatorname{argmin}_{a \in A(s)} Q_V(a, s)$ for V satisfying Bellman

Value Iteration (VI): A general solution method

- 1. Start with ${\it arbitrary}$ cost function V
- 2. Repeat until residual over all s is 0 (i.e., LHS = RHS) **Update** $V(s) := \min_{a \in A(s)} Q_V(a, s)$ for **all** s
- 3. Return $\pi_V(s) = \operatorname{argmin}_{a \in A(s)} Q_V(a, s)$
- VI is simple and general (models encoded in form of Q_V), but also exhaustive (considers all states) and affected by dead-ends (V^{*}(s) = ∞)
- Both problems solvable using **initial state** s_0 and **lower bound** $V \ldots$

Find-and-Revise: Selective VI Schema

Assume V admissible $(V \leq V^*)$ and monotonic $(V(s) \leq \min_{a \in A(s)} Q_V(a, s))$ Define s inconsistent if $V(s) < \min_{a \in A(s)} Q_V(a, s)$

- 1. Start with a lower bound \boldsymbol{V}
- 2. Repeat until no more states found in a.
 - a. Find inconsistent s reachable from s_0 and π_V
 - b. Update V(s) to $\min_{a \in A(s)} Q_V(a, s)$
- 3. Return $\pi_V(s) = \operatorname{argmin}_{a \in A(s)} Q_V(a, s)$
- Find-and-Revise yields optimal π in at most $\sum_{s} V^*(s) V(s)$ iterations (provided integer costs and no probabilities)
- Proposed LDFS = Find-and-Revise with:
 - Find = DFS that backtracks on inconsistent states that
 - Updates states on backtracks, and
 - Labels as Solved states s with no inconsistencies beneath

Learning in Depth-First Search (LDFS)

```
LDFS-DRIVER(s_0)
begin
     repeat solved := LDFS(s_0) until solved
     return (V, \pi)
end
LDFS(s)
begin
     if s is solved or terminal then
          if s is terminal then V(s) := c_T(s)
           Mark s as SOLVED
          return true
     flag := false
     foreach a \in A(s) do
           if Q_V(a,s) > V(s) then continue
           flag := true
          foreach s' \in F(a,s) do
                flag := LDFS(s') \& [Q_V(a,s) \le V(s)]
             if \neg f lag then break
          if flag then break
     if flag then
           \pi(s) := a
          Mark s as SOLVED
     else
          V(s) := \min_{a \in A(s)} Q_V(a, s)
     return flag
end
```

Properties of LDFS and Bounded LDFS

LDFS computes π^* for **all models** if V admissible (i.e. $V \leq V^*$)

• For **OR-Graphs** and **monotone** *V*,

 $LDFS = IDA^* + TRANSPOSITION TABLES$

• For Game Trees and $V = -\infty$,

BOUNDED LDFS = $MTD(-\infty)$

• For Additive models,

LDFS = BOUNDED LDFS

• For Max models,

 $LDFS \neq BOUNDED LDFS$

LDFS (like VI, AO*, min-max LRTA*, etc) computes optimal solutions graphs where each node is an optimal solution subgraph; over **Max Models**, this isn't needed. **Bounded LDFS fixed this, enforcing consistency only where needed**

Empirical Evaluation: Algorithms, Heuristics, Domains

- Algorithms: VI, AO^*/CFC_{rev}^* , min-max LRTA*, LDFS, BOUNDED LDFS
- Heuristics: h = 0 and two domain-independent heuristics h_1 and h_2
- Domains
 - Coins: Find counterfeit coin among N coins; $N = 10, 20, \ldots, 60$.
 - **Diagnosis:** Find true state of system among M states with N binary tests: In one case, N = 10 and M in $\{10, 20, \ldots, 60\}$, in second, M = 60 and N in $\{10, 12, \ldots, 28\}$.
 - **Rules:** Derivation of atoms in acyclic rule systems with N atoms, and at most R rules per atom and M atoms per rule body ... R = M = 50 and N in $\{5000, 10000, \ldots, 20000\}$.
 - MTS: Predator must catch a prey that moves non-deterministically to a non-blocked adjacent cell in a given random maze of size $N \times N$; $N = 15, 20, \ldots, 40 \ldots$

problem	S	V^*	$N_{ m VI}$	A	F	$ \pi^* $
coins-10	43	3	2	172	3	9
coins-60	1,018	5	2	315K	3	12
mts-5	625	17	14	4	4	156
mts-35	1,5M	573	322	4	4	220K
mts-40	2,5M	684	—	4	4	304K
diag-60-10	29,738	6	8	10	2	119
diag-60-28	> 15 M	6	—	28	2	119
rules-5000	5,000	156	158	50	50	4,917
rules-20000	20,000	592	594	50	50	19,889

Empirical Evaluation: Results (1)

Empirical Evaluation: Results (2)

Runtimes are roughly BOUNDED LDFS< LDFS \leq LRTA*< AO*< VI, except in RULES where LRTA* is best.

Conclusions

• Unified computational framework, that is simple, general, and efficient

LDFS = Depth First Search + Learning

- Reduces to state-of-the-art algorithms in some models (OR Graphs and GTs)
- Yields new competitive algorithms in others (e.g., AND/OR Graphs)
- Shows that ideas underlying a wide range of algorithms **reduce to**:

Depth First Search Lower Bounds Learning