
An Algorithm better than AO*?

Blai Bonet
Universidad Simón Boĺıvar

Caracas, Venezuela

Héctor Geffner
ICREA and Universitat Pompeu Fabra

Barcelona, Spain

7/2005

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 1

Motivation

• Heuristic Search methods can be efficient but lack common foundation: IDA*,
AO*, Alpha-Beta, ...

• Dynamic Programming methods such as Value Iteration are general but not
as efficient

• Question: can we the get the best of both; i.e., generality and efficiency?

• Answer is yes, combining their key ideas:

Admissible Heuristics (Lower Bounds)
Learning (Value Updates as in LRTA*, RTDP, etc)

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 2

What does proposed integration give us?

An algorithm schema, called LDFS, that is simple, general, and efficient:

• simple because it can be expressed in a few lines of code; indeed

LDFS = Depth First Search + Learning

• general because it handles many models: OR Graphs (IDA*), AND/OR Graphs
(AO*), Game Trees (Alpha-Beta), MDPs, etc.

• efficient because it reduces to state-of-the-art algorithms in many of these
models, while in others, yields new competitive algorithms; e.g.

LDFS =
{

IDA* + TT for OR-Graphs
MTD(−∞) for Game Trees

We also show that LDFS better than AO* over Max AND/OR Graphs . . .

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 3

What does proposed integration give us? (cont'd)

• Like LRTA*, RTDP, and LAO*, LDFS combines lower bounds with learning,
but motivation and goals are slightly different

• By accounting for and generalizing existing algorithms, we aim to uncover the
three key computational ideas that underlie them all so that nothing else
is left out. These ideas are:

Depth First Search
Lower Bounds
Learning

• It is also useful to know that, say, new MDP algorithm, reduces to well-known
and tested algorithms when applied OR-Graphs or Game Trees

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 4

Models

1. a discrete and finite states space S,

2. an initial state s0 ∈ S,

3. a non-empty set of terminal states ST ⊆ S,

4. actions A(s) ⊆ A applicable in each non-terminal state,

5. a function that maps states and actions into sets of states F (a, s) ⊆ S,

6. action costs c(a, s) for non-terminal states s, and

7. terminal costs cT (s) for terminal states.

• Deterministic: |F (a, s)| = 1,

• Non-Deterministic: |F (a, s)| ≥ 1,

• MDPs: probabilities Pa(s′|s) for s′ ∈ F (s, a) that add up to 1 . . .

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 5

Solutions

(Optimal) Solutions can all be expressed in terms of value function V satisfying
Bellman equation:

V (s) =
{

cT (s) if s is terminal
mina∈A(s) QV (a, s) otherwise

where QV (a, s) stands for the cost-to-go value defined as:

c(a, s) + V (s′), s′ ∈ F (a, s) for OR Graphs
c(a, s) + maxs′∈F (a,s) V (s′) for Max AND/OR Graphs
c(a, s) +

∑
s′∈F (a,s) V (s′) for Add AND/OR Graphs

c(a, s) +
∑

s′∈F (a,s) Pa(s′|s)V (s′) for MDPs

maxs′∈F (a,s) V (s′) for Game Trees

A policy (solution) π maps states into actions, must be closed around s0, and is
optimal if π(s) = argmina∈A(s)QV (a, s) for V satisfying Bellman

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 6

Value Iteration (VI): A general solution method

1. Start with arbitrary cost function V
2. Repeat until residual over all s is 0 (i.e., LHS = RHS)

Update V (s) := mina∈A(s) QV (a, s) for all s

3. Return πV (s) = argmina∈A(s)QV (a, s)

• VI is simple and general (models encoded in form of QV), but also exhaustive
(considers all states) and affected by dead-ends (V ∗(s) = ∞)

• Both problems solvable using initial state s0 and lower bound V . . .

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 7

Find-and-Revise: Selective VI Schema

Assume V admissible (V ≤ V ∗) and monotonic (V (s) ≤ mina∈A(s) QV (a, s))

Define s inconsistent if V (s) < mina∈A(s) QV (a, s))

1. Start with a lower bound V
2. Repeat until no more states found in a.

a. Find inconsistent s reachable from s0 and πV

b. Update V (s) to mina∈A(s) QV (a, s)
3. Return πV (s) = argmina∈A(s)QV (a, s)

• Find-and-Revise yields optimal π in at most
∑

s V ∗(s)−V (s) iterations (provided
integer costs and no probabilities)

• Proposed LDFS = Find-and-Revise with:

– Find = DFS that backtracks on inconsistent states that
– Updates states on backtracks, and
– Labels as Solved states s with no inconsistencies beneath

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 8

Learning in Depth-First Search (LDFS)
ldfs-driver(s0)
begin

repeat solved := ldfs(s0) until solved
return (V, π)

end

ldfs(s)
begin

if s is solved or terminal then
if s is terminal then V (s) := cT (s)
Mark s as solved
return true

flag := false
foreach a ∈ A(s) do

if QV (a, s) > V (s) then continue
flag := true
foreach s′ ∈ F (a, s) do

flag := ldfs(s′) & [QV (a, s) ≤ V (s)]
if ¬flag then break

if flag then break

if flag then
π(s) := a
Mark s as solved

else
V (s) := mina∈A(s) QV (a, s)

return flag

end

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 9

Properties of LDFS and Bounded LDFS

ldfs computes π∗ for all models if V admissible (i.e. V ≤ V ∗)

• For OR-Graphs and monotone V ,

ldfs = ida* + transposition tables

• For Game Trees and V = −∞,

bounded ldfs = mtd(−∞)

• For Additive models,

ldfs = bounded ldfs

• For Max models,

ldfs 6= bounded ldfs

LDFS (like VI, AO*, min-max LRTA*, etc) computes optimal solutions graphs where
each node is an optimal solution subgraph; over Max Models, this isn’t needed.
Bounded LDFS fixed this, enforcing consistency only where needed

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 10

Empirical Evaluation: Algorithms, Heuristics, Domains

• Algorithms: vi, ao*/cfcrev∗, min-max lrta*, ldfs, bounded ldfs

• Heuristics: h = 0 and two domain-independent heuristics h1 and h2

• Domains
– Coins: Find counterfeit coin among N coins; N = 10, 20, . . . , 60.

– Diagnosis: Find true state of system among M states with N binary tests: In one case,

N = 10 and M in {10, 20, . . . , 60}, in second, M = 60 and N in {10, 12, . . . , 28}.
– Rules: Derivation of atoms in acyclic rule systems with N atoms, and at most R rules per

atom and M atoms per rule body . . . R = M = 50 and N in {5000, 10000, . . . , 20000}.
– MTS: Predator must catch a prey that moves non-deterministically to a non-blocked adjacent

cell in a given random maze of size N × N ; N = 15, 20, . . . , 40 . . .

problem |S| V ∗ Nvi |A| |F | |π∗|
coins-10 43 3 2 172 3 9
coins-60 1,018 5 2 315K 3 12

mts-5 625 17 14 4 4 156
mts-35 1, 5M 573 322 4 4 220K
mts-40 2, 5M 684 – 4 4 304K

diag-60-10 29,738 6 8 10 2 119
diag-60-28 > 15M 6 – 28 2 119

rules-5000 5,000 156 158 50 50 4,917
rules-20000 20,000 592 594 50 50 19,889

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 11

Empirical Evaluation: Results (1)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

tim
e

in
 s

ec
on

ds

number of coins

coins / h = 0

LDFS / B-LDFS
VI

AO* / LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

number of coins

coins / h = h1(#vi/2)

LDFS / B-LDFS

VI

AO*

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

number of coins

coins / h = h2(#vi/2)

LDFS / B-LDFS
VI

AO* / LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

tim
e

in
 s

ec
on

ds

size of maze

mts / h = 0

CFC

VI

LDFS

B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*/CFC

Min-Max LRTA*
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

size of maze

mts / h = h1(#vi/2)

CFC

VI

LDFS

B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*/CFC

Min-Max LRTA*
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

size of maze

mts / h = h2(#vi/2)

CFC

VI

LDFS

B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*/CFC

Min-Max LRTA*

 1

 10

 100

 5000 10000 15000 20000 25000

tim
e

in
 s

ec
on

ds

number of atoms

rules systems / max rules = 50, max body = 50 / h = zero

AO*

VI / LDFS / B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 1

 10

 100

 5000 10000 15000 20000 25000

number of atoms

rules systems / max rules = 50, max body = 50 / h = h1(#vi/2)

AO*
VI

LDFS / B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 1

 10

 100

 5000 10000 15000 20000 25000

number of atoms

rules systems / max rules = 50, max body = 50 / h = h2(#vi/2)

AO*

VI

LDFS / B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 12

Empirical Evaluation: Results (2)

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70

tim
e

in
 s

ec
on

ds

number of states

diagnosis / #tests = 10 / h = 0

VI

AO*

LDFS

B-LDFS

LRTA* Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70

number of states

diagnosis / #tests = 10 / h = h1(#vi/2)

VI

AO*

LRTA*

LDFS / B-LDFS

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60 70

number of states

diagnosis / #tests = 10 / h = h2(#vi/2)

VI

AO*

LDFS

B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*

 0.01

 0.1

 1

 10

 100

 1000

 10 15 20 25 30

tim
e

in
 s

ec
on

ds

number of tests

diagnosis / #states = 60 / h = 0

VI

AO*

LDFS

B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 15 20 25 30

number of tests

diagnosis / #states = 60 / h = h1(#vi/2)

VI

AO*

LRTA*

LDFS / B-LDFS

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 15 20 25 30

number of tests

diagnosis / #states = 60 / h = h2(#vi/2)

VI

AO*
LDFS

B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*

Runtimes are roughly bounded ldfs< ldfs≤ lrta*< ao*< vi, except in RULES
where lrta* is best.

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 13

Conclusions

• Unified computational framework, that is simple, general, and efficient

LDFS = Depth First Search + Learning

• Reduces to state-of-the-art algorithms in some models (OR Graphs and GTs)

• Yields new competitive algorithms in others (e.g., AND/OR Graphs)

• Shows that ideas underlying a wide range of algorithms reduce to:

Depth First Search
Lower Bounds
Learning

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 14

