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Abstract
Belief tracking is a basic problem in planning with
sensing. While the problem is intractable, it has
been recently shown that for both deterministic
and non-deterministic systems expressed in com-
pact form, it can be done in time and space that
are exponential in the problem width. The width
measures the maximum number of state variables
that are all relevant to a given precondition or goal.
In this work, we extend this result both theoreti-
cally and practically. First, we introduce an alter-
native decomposition scheme and algorithm with
the same time complexity but different complete-
ness guarantees, whose space complexity is much
smaller: exponential in the causal width of the
problem that measures the number of state vari-
ables that are causally relevant to a given precon-
dition, goal, or observable. Second, we introduce a
fast, meaningful, and powerful approximation that
trades completeness by speed, and is both time and
space exponential in the problem causal width. It
is then shown empirically that the algorithm com-
bined with simple heuristics yields state-of-the-art
real-time performance in domains with high widths
but low causal widths such as Minesweeper, Battle-
ship, and Wumpus.

1 Introduction
Planning with sensing is a search problem in belief space that
involves two tasks: keeping track of beliefs and selecting the
action to do next. In this paper, we consider the first task
in a logical, non-probabilistic setting, where beliefs stand for
sets of states. While belief tracking for problems expressed
in compact form is computationally intractable, it has been
recently shown that for deterministic problems, the problem
can be solved in time and space that are exponential in a
problem width parameter that in many of the existing bench-
marks is bounded and small [Palacios and Geffner, 2009;
Albore et al., 2009]. The same result has been extended to
non-deterministic problems where the task of keeping track
of global beliefs b over all problem variables is replaced by
the task of keeping track of local beliefs bX for each precondi-
tion and goal variableX , each of which involves the variables

that are relevant toX . The width w(X) of a variableX is the
number of variables that are relevant to X , and the width of
the problem, w(P ), is the maximum number of variables that
are all relevant to a precondition or goal variable. The algo-
rithm that tracks beliefs in time and space that are exponential
in the problem width is called factored belief tracking [Bonet
and Geffner, 2012].

A limitation of these accounts is that many meaningful do-
mains have large, unbounded widths. In this work, we aim
to extend these results so that such problems can be handled
effectively. For this, we introduce an alternative decomposi-
tion scheme and belief tracking algorithm with the same time
complexity as factored belief tracking but whose space com-
plexity is often much smaller: exponential in the causal width
of the problem. The causal width measures the number of
state variables that are all causally relevant to a given precon-
dition, goal, or observable. We also determine the conditions
under which the new belief tracking scheme is complete, and
use the new decomposition to define an incomplete but mean-
ingful and powerful approximation algorithm that is practical
enough, as it is both time and space exponential in the prob-
lem causal width.

The paper is organised as follows. After reviewing the ba-
sic model and notions from Bonet and Geffner [2012], we in-
troduce the new notion of causal width, a new decomposition
scheme, and the new algorithm. We then test the algorithm
experimentally.

2 Planning with Sensing
We review the standard model for planning with sensing, and
a language for representing these models in compact form.

2.1 Model
The model for planning with sensing is a simple extension
of the model for conformant planning where a goal is to be
achieved with certainty in spite of uncertainty in the initial
situation or action effects. The model for conformant plan-
ning is characterized by a tuple S = 〈S, S0, SG, A, F 〉 where
S is a finite state space, S0 is a non-empty set of possible
initial states, SG is a non-empty set of goal states, A is a set
of actions with A(s) denoting the actions applicable in state
s ∈ S, and F is a non-deterministic transition function such
that F (a, s) denotes the non-empty set of possible successor
states that follow action a in state s, a ∈ A(s).
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Conformant planning can be cast as a path finding problem
over beliefs defined as the sets of states that are deemed pos-
sible at any one point [Bonet and Geffner, 2000]. The initial
belief b0 is S0, and the belief ba that results from an action a
in a belief state b is:

ba = {s′ | there is s ∈ b such that s′ ∈ F (a, s)} , (1)
where it is assumed that the action a is applicable at each
state s in b. Contingent planning or planning with sensing
is planning with both uncertainty and feedback. The model
for contingent planning is the model for conformant planning
extended with a sensor model. A sensor model is a function
O(s, a) that maps state-action pairs into observations tokens
o. The expression o ∈ O(s, a) means that token o is a pos-
sible observation when s is the true state of the system and a
is the last action done. Executions in the contingent setting
are sequences of action-observation pairs a0, o0, a1, o1, . . ..
If b = bi is the belief state when the action ai is applied and
oi is the token that is observed, then the belief ba after the
action a = ai is given by Eq. 1, and the belief bi+1 = boa that
follows from observing the token o is:

boa = {s | s ∈ ba and o ∈ O(s, a)} . (2)
An execution a0, o0, a1, o1, . . . is deemed possible in P if
starting from the initial belief b0, each action ai is applica-
ble at the belief bi (i.e., ai ∈ A(s) for all s ∈ bi), and bi+1 is
non-empty. The contingent model is similar to POMDPs but
with uncertainty encoded through sets rather than probability
distributions.

2.2 Syntax
Syntactically, conformant problems can be expressed in com-
pact form through a set of state variables, which for con-
venience we assume to be multi-valued. More precisely, a
conformant planning problem is a tuple P = 〈V, I, A,G〉
where V stands for the problem variables X , each one with
a finite domain DX , I is a set of clauses over the V -literals
defining the initial situation, A is a set of actions, and G is
a set of V -literals defining the goal. Every action a has a
precondition Pre(a), given by a set of V -literals, and a set
of conditional effects C → E1| . . . |En, where C and each
Ei is a set (conjunction) of V -literals. The conditional ef-
fect is non-deterministic if n > 1; else it is deterministic.
A conformant problem P = 〈V, I, A,G〉 defines a confor-
mant model S(P ) = 〈S, S0, SG, A, F 〉, where S is the set of
valuations over the variables in V , S0 and SG are the set of
valuations that satisfy I and G, A(s) is the set of operators
whose preconditions are true in s, and F (a, s) is determined
by the conditional effects of a in the standard way.

Contingent problems can be described by extending the
syntactic description of conformant problems with a compact
encoding of the sensor model. For this, we assume a set V ′ of
observable multi-valued variables Y , not necessarily disjoint
with the set of state variables V (i.e., some state variables
may be observable), and formulas Wa(Y = y) over a subset
of state variables, for each action a and each possible value
y of each observable variable Y . The formula Wa(Y = y)
encodes the states over which the observation Y = y is pos-
sible when a is the last action. A contingent problem is a tu-
ple P = 〈V, I, A,G, V ′,W 〉 that defines a contingent model

that is given by the conformant model 〈S, S0, SG, A, F 〉 de-
termined by the first four components in P , and the sensor
modelO(s, a) determined by the last two components, where
o ∈ O(s, a) iff o is a valuation over the observable variables
Y ∈ V ′ such that Y = y is true in o only if the formula
Wa(Y = y) in W is true in s.

For simplicity and without loss of generality, we make
three simplifying assumptions [Bonet and Geffner, 2012];
namely, that the initial situation I is given by a set of lit-
erals, that non-deterministic conditional effects involve just
one variable in their heads, and that every observable vari-
able is relevant to a variable appearing in some precondition
or goal. If these assumptions are not true for a problem, they
can be enforced by means of simple, equivalence-preserving
transformations.1 Extensions of this basic language featuring
defined variables and state constraints are discussed below.

3 Belief Tracking for Planning
A real execution is an interleaved sequence of actions and
observations a0, o0, a1, o1, . . ., where ai is an action from the
problem and oi is a full valuation over the observable vari-
ables. We will find it convenient, however, to consider gener-
alized executions a0, o0, a1, o1, . . . where the oi’s denote par-
tial valuations, and in particular, observation literals Y = y.
Any real execution can be expressed as a generalized execu-
tion provided that the observation literals that arise from the
same (full) observation are separated by dummy NO-OP ac-
tions with no effects. The belief tracking for planning prob-
lem can then be expressed as follows:

Definition 1. The belief tracking for planning (BTP) problem
is the problem of determining whether a generalized execu-
tion τ : a0, o0, a1, o1, . . . , ak, ok is possible for a problem P ,
and whether it achieves the goal.

In other words, for a planner to be complete, it just needs
to determine which observations are possible after an execu-
tion, which actions are applicable, and whether the goal has
been achieved. There is no need, on the other hand, to deter-
mine whether an arbitrary formula is true after an execution.
This is an important distinction which is not exploited by the
baseline algorithm for BTP, which is called flat belief track-
ing and is the result of the iterative application of Equations 1
and 2. The complexity of flat belief tracking is exponential in
the number of state variables |V |. Often, however, the value
of some variables is not uncertain and such variables do not
add up to the complexity of tracking beliefs. We call such
variables determined. Formally, a set of state variables X is
determined when they are all initially known, they appear in
the heads of deterministic effects only, and the variables ap-
pearing in the body of such effects, if any, are in the set as
well. The set of determined variables for problem P is the
maximal set of variables that is determined.

The BTP problem, however, remains intractable in the
worst case:

Theorem 2. The belief tracking for planning (BTP) problem
is NP-hard and coNP-hard.

1A longer version of the paper provides the proofs and necessary
details.
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4 Width and Factored Belief Tracking
Factored belief tracking [Bonet and Geffner, 2012] improves
flat belief tracking by focusing on the beliefs that are strictly
necessary for solving BTP, and by exploiting the structure
of the problem. For this, a variable X is regarded as an
immediate cause of a variable X ′ in a problem P , written
X ∈ Ca(X ′), if X 6= X ′, and either X occurs in the
body C of a conditional effect C → E1| · · · |En such that
X ′ occurs in a head Ei, 1 ≤ i ≤ n, or X occurs in a for-
mula Wa(X ′ = x′) for an observable variable X ′ and value
x′ ∈ DX′ . Causal relevance is the transitive closure of this
relation:

Definition 3. X is causally relevant to X ′ in P if X = X ′,
X ∈ Ca(X ′), or X is causally relevant to a variable Z that
is causally relevant to X ′.

In the presence of observations, however, relevance does
not flow only causally, but like in Bayesian Networks [Pearl,
1988], it also flows evidentially:

Definition 4. X is evidentially relevant to X ′ in P if X ′ is
causally relevant to X and X is an observable variable.

Relevance is the transitive closure of the causal and evidential
relations taken together:

Definition 5. X is relevant to X ′ if X is causally or eviden-
tially relevant to X ′, or X is relevant to a variable Z that is
relevant to X ′.

The width of a variable X and the width of the problem are
defined in terms of the relevance relation:

Definition 6. The width of a variable X , w(X), is the num-
ber of state variables that are relevant toX and are not deter-
mined. The width of the problem P , w(P ), is maxX w(X),
where X ranges over the variables that appear in a goal or
action precondition.

The result obtained by Bonet and Geffner [2012] is an al-
gorithm that solves the BTP problem in time and space that
are exponential in the problem width. For this, factored belief
tracking does not track the global belief b over all the problem
variables after an execution, but tracks the ‘local beliefs’ bX
over the state variables that are relevant to each variable X
appearing in action preconditions or goals. This is sufficient
for solving BTP. The local beliefs bX are defined in turn as
the global beliefs that result from an execution over a problem
that is like P but with all state variable that are not relevant to
X , projected away. These projected problems are defined as:

Definition 7. The projection of problem P = 〈V, I, A,G,
V ′,W 〉 on a subset of state variables S ⊆ V is PS = 〈VS ,
IS , AS , GS , V

′
S ,WS〉 where VS is S, IS and GS are the ini-

tial and goal formulas I and G (logically) projected over the
variables in S, AS is A but with preconditions and condi-
tional effects projected over S, V ′

S is V ′, and WS is the set of
formulas Wa(Y = y) in W projected on the variables in S.2

2The logical projection of formula F over a subset S of its vari-
ables refers to the formula F ′ defined over the variables in S, such
that the valuations that satisfy F ′ are exactly those that can be ex-
tended into valuations that satisfy F [Darwiche and Marquis, 2002].

For convenience, the projection PS of P where S is the set
of state variables relevant to X is abbreviated as PX . The
projections PX for variables X appearing in action precondi-
tions or goals ensure three key properties: first, that the real
and generalized executions a0, o0, a1, o1, . . . that are possible
in P are possible in PX ; second, that belief tracking over the
projections PX is time and space exponential in w(P ), and
finally, that the beliefs bX and b that result from such execu-
tions over PX and P are equivalent over the set of variables
relevant to X . Factored belief tracking is the algorithm that
solves the belief tracking problem over P by keeping track of
the local beliefs bX for each precondition and goal variable
X using flat belief tracking over each of the projections PX :

Theorem 8 (Bonet and Geffner [2012]). Factored belief
tracking solves the belief tracking problem for planning in
time and space that are exponential in the problem width.

5 Causal vs. Factored Decompositions
While there are many domains that have a bounded and low
width [Palacios and Geffner, 2009; Albore et al., 2009], there
are also many meaningful domains that do not. The contribu-
tion of this paper is a reformulation of the above results that
lead to a fast, meaningful, and powerful approximation belief
tracking algorithm that applies effectively to a much larger
class of problems. For this, we introduce the idea of decom-
positions, cast factored belief tracking in terms of one such
decomposition, and introduce an alternative decomposition
leading to different algorithms.

Definition 9. A decomposition of a problem P is a pair
D = {T,B}, where T is a set of variables X appearing
in P , called the target variables of the decomposition, and B
is the collection of beams B(X) associated with such target
variables such that B(X) is a set of state variables from P .

A decomposition D = {T,B} maps P into a set of sub-
problems PD

X , one for each variable X in T , that corre-
spond to the projections of P over the state variables in the
beam B(X). The decomposition that underlies factored be-
lief tracking is:

Definition 10. The factored decomposition F = {TF , BF }
of P is such that TF stands for the set of variables X appear-
ing in action preconditions or goals, and B(X) is the set of
state variables relevant to X .

Factored belief tracking is flat belief tracking applied to
the subproblems determined by the factored decomposition.
The complexity of the algorithm is exponential in the prob-
lem width, which bounds the size of the beams in the decom-
position. The algorithms that we introduce next are based on
a different decomposition:

Definition 11. The causal decomposition C = {TC , BC} of
P is such that TC stands for the action precondition, goal,
and observable variables in P , and BC(X) is the set of state
variables that are causally relevant to X .

The causal decomposition determines a larger number of
subproblems, as subproblems are generated also for the ob-
servable variables X , but the beams BC(X) associated with
these subproblems are smaller, as they contain only the state
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variables that are causally relevant to X as opposed to the
relevant variables. The causal width of a problem is defined
in terms of the largest beam in the causal decomposition:
Definition 12. The causal width of a variableX in a problem
P , wc(X), is the number of state variables that are causally
relevant to X and are not determined. The causal width of P
is maxX wc(X), whereX ranges over the target variables in
the causal decomposition of P .

The first and simplest belief tracking algorithm defined
over the new causal decomposition is what we call Decou-
pled Causal Belief Tracking or Decoupled CBT, which runs
in time and space that are exponential in the causal width:
Definition 13. Decoupled CBT is flat belief tracking applied
independently to each of the problems PC

X determined by the
causal decomposition of P .

Since causal width is never greater than width and is of-
ten much smaller, Decoupled CBT will run much faster than
factored belief tracking in general. This, however, comes at
a price, that we express using relational operators for projec-
tions and joins, exploiting that beliefs are tables or relations
whose rows are states, and whose columns are variables.3 The
subproblem of P determined for a target variable X in the
causal decomposition is denoted as PC

X ; i.e., PC
X = PBC(X).

Theorem 14. Decoupled CBT is sound and runs in time and
space that are exponential in wc(P ) but it is not complete;
i.e., for any target variable X in the causal decomposition, if
b and bX are the beliefs resulting from an execution on P and
PC
X respectively, then bX ⊇ ΠBC(X)b is necessarily true, but
bX ⊆ ΠBC(X)b is not.

One reason for the incompleteness of Decoupled CBT is
that the beliefs bX associated with different target variables
X are not independent. Indeed, a variable Z may appear in
two beams of the causal decomposition, with some variables
relevant to Z in one beam, and other variables relevant to Z in
the other. In the factored decomposition this cannot happen,
as all the variables that are relevant to Z will appear in all the
beams that containZ. In the causal decomposition, beams are
kept small by not closing them with the relevance relation, but
as a result, the beliefs over such beams are not independent.

6 Causal Belief Tracking
In causal belief tracking, the local beliefs are not tracked in-
dependently over each of the subproblems PC

X of the causal
decomposition; rather, the local beliefs are first progressed
and filtered independently, but then are merged and projected
back onto each of the beams, making them consistent with
each other. This consistency operation is expressed using the
projection and join operators:
Definition 15. Causal belief tracking is the belief tracking
algorithm that operates on the causal decomposition C =
〈TC , BC〉, setting the beliefs b0X at time 0 over each beam

3For example, if b contains the valuations (states) X = 1, Y = 1
and X = 2, Y = 2, the projection Π{X}b will contain the valua-
tions X = 1 and X = 2. Likewise, if b′ contains Y = 1, Z = 1 and
Y = 1, Z = 2, the join bon b′ will contain X = 1, Y = 1, Z = 1
and X = 1, Y = 1, Z = 2.

BC(X), X ∈ TC , to the projection of the initial belief over
the beam, and the successive beliefs bi+1

X as:

bi+1
X =

∏
BC(X)on{(biY )oa :Y in TC and relevant to X} (3)

where a = ai and o = oi are the action and obs. at time i in
the execution, and (biY )oa is boa from Eqs. 1–2 with b = biY .

Progressing and filtering the local beliefs in the causal de-
composition is time and space exponential in the problem
causal width, but the consistency operation captured by the
join-project operation in (3) is time exponential in the num-
ber of state variables that are relevant to X . As a result:
Theorem 16. CBT is space exponential in the problem causal
width, and time exponential in the problem width.

CBT is sound but still not complete. However, the range of
problems for which CBT is complete, unlike Decoupled CBT,
is large and meaningful enough, and it includes for example
the three domains to be considered in the experimental sec-
tion: Minesweeper, Battleship and Wumpus. We express the
completeness conditions for CBT by introducing the notions
of memory variables and causally decomposable problems. A
state variable X is a memory variable in a problem P when
the value Xk of the variable at any time point k can be deter-
mined uniquely from an observation of the value of the vari-
able Xi at any other time point i, the actions done in the exe-
cution, and the initial belief state of the problem. Thus, static
variables are memory variables, as much as variables that are
determined (Section 3). For the first, Xk = Xi, while for
the second, Xk is determined by the initial belief and the ac-
tions before time k. All the variables in permutation domains
[Amir and Russell, 2003] are also memory variables.
Definition 17. A problem P is causally decomposable when
for every pair of beams BC(X) and BC(X ′) in the causal
decomposition, then 1) the variables in the intersection of the
two beams are all memory variables, or 2) there is a beam in
the decomposition that includes both beams.
Theorem 18. CBT is always sound and it is complete for
causally decomposable problems.

7 Approximation: Beam Tracking
The last algorithm, beam tracking is also defined over the new
causal decomposition but it is not aimed at being complete
but rather efficient and effective. It combines the low com-
plexity of Decoupled CBT, which is time and space exponen-
tial in the causal width of the problem, with a form of lo-
cal consistency that approximates the global consistency en-
forced in CBT:
Definition 19. Beam tracking is the belief tracking algorithm
that operates on the causal decomposition C = 〈TC , BC〉,
setting the beliefs b0X at time 0 over each beam BC(X), X ∈
TC , to the projection of the initial belief over the beam, and
setting the successive beliefs bi+1

X in two steps. First, they are
set to boa for b = biX , a = ai, and o = oi, where ai and oi are
the action and observation at time i in the execution. Then
a local form of consistency is enforced upon these beliefs by
means of the following updates until a fixed point is reached:

bi+1
X := ΠBc(X)( b

i+1
X on bi+1

Y ) . (4)
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The filtering captured by the iterative updates in Eq. 4 de-
fines a form of relational arc consistency [Dechter and Beek,
1997] where equality constraints among beams sharing com-
mon variables is enforced in polynomial time and space in the
size of the beams. Beam tracking is sound but not complete.
In problems that satisfy the conditions in Theorem 18, how-
ever, the incompleteness is the sole result of replacing global
consistency by local consistency.

8 Extensions
Before considering the experiments, we discuss briefly two
simple but useful extensions of the language and the algo-
rithms. The first involves defined variables. A variable Z
with domain DZ can be defined as a function of a subset of
state variables in the problem, or as a function of the belief
over such variables (e.g., Z true when X = Y is known to
be true). Variables defined in this way can then be used in
action preconditions or goals, and the immediate causes of
such variables are the state variables appearing in its defini-
tion. All the results above carry to domains with defined vari-
ables once they are added to the set of target variables in the
factored and causal decompositions. The second extension is
state constraints. In Battleship, for example, they are used
to express the conditions under which the neighbor of a cell
containing a ship, will contain the same ship. A state con-
straint represented by a formula C can be encoded by means
of a dummy observable variable Y that is always observed to
be true, and can be observed to be true only in states where
C is true; i.e., Wa(Y = true) = C. For the implementation,
however, it pays off to treat such constraints C as relations,
and to include them in all the ‘joins’ over beliefs that include
the variables in C. In causal belief tracking, this has no effect
on the completeness or complexity of the algorithm, but in
beam tracking, changing the update in (4) to

bi+1
X := ΠBc(X)(b

i+1
X on bi+1

Y onC) (5)

where C stands for the state constraints whose variables
are included in BC(X) ∪ BC(Y ), makes local consistency
stronger with no effect on the complexity of the algorithm.
Moreover, when there is one such pair of beams for every
state constraint, the state constraints can increase the causal
width of the problem by a constant factor of 2 at most, yet the
effective causal width of the problem does not change, as the
beams associated with the dummy observables introduced for
such constraints can be ignored.

9 Experimental Results
We have tested the beam tracking algorithm over three do-
mains, Battleship, Minesweeper, and Wumpus, in combina-
tion with simple heuristics for selecting actions. Belief track-
ing in these domains is difficult [Kaye, 2000; Scott et al.,
2011], and the sizes of the instances considered are much
larger than those used in contingent planning. Moreover,
some of these domains do not have full contingent solutions.
We thus compare our on-line planner that relies on hand-
crafted heuristics with two reported solvers that rely on belief
tracking algorithms tailored to the domains. We also con-
sider a simpler and fully-solvable version of Wumpus where

avg. time per

dim policy #ships #torpedos decision game

10× 10 greedy 4 40.0± 6.9 2.4E-4 9.6E-3
20× 20 greedy 8 163.1± 32.1 6.6E-4 1.0E-1
30× 30 greedy 12 389.4± 73.4 1.2E-3 4.9E-1
40× 40 greedy 16 723.8± 129.2 2.1E-3 1.5

10× 10 random 4 94.2± 5.9 5.7E-5 5.3E-3
20× 20 random 8 387.1± 13.6 7.4E-5 2.8E-2
30× 30 random 12 879.5± 22.3 8.5E-5 7.4E-2
40× 40 random 16 1,572.8± 31.3 9.5E-5 1.4E-1

Table 1: Battleship. Averages over 10,000 runs. Time is in
seconds.

the comparison with off-line and on-line contingent planners
is feasible. The results have been obtained on a Xeon ‘Wood-
crest’ 5140 CPU running at 2.33 GHz with 8GB of RAM.4

Battleship
The problem is encoded with 6 variables per cell:5 hitx,y tells
if a torpedo has been fired at the cell, szx,y is the size of the
ship occupying the cell (0 if no such ship), hzx,y encodes if
ship is placed horizontally or vertically, nhitsx,y is the num-
ber of hits for ship at cell, and ancx,y is the relative position
of the ship on the cell. The observable variable is waterx,y
with sensor model given by Wfire(x,y)(waterx,y = true) =
(szx,y = 0). In addition, state constraints are used to describe
how a ship at a given cell constrains the variables associated
with neighboring cells. The goal of the problem is to achieve
the equality nhitsx,y = szx,y over the cells that may con-
tain a ship. In this encoding, the causal beams never contain
more than 5 variables, even though the problem width is not
bounded and grows with the grid dimensions.

Table 1 shows results for two policies: a random policy
that fires at any non-fired cell at random, and a greedy policy
that fires at the non-fired cell most likely to contain a ship.
Approximations of these probabilities are obtained from the
beliefs computed by beam tracking. The difference in per-
formance between the two policies shows that the beliefs are
very informative. Moreover, for the 10× 10 game, the agent
fires 40.0 ± 6.9 torpedos on average, matching quite closely
the results of Silver and Veness [2010] obtained with a com-
bination of UCT [Kocsis and Szepesvári, 2006] for action se-
lection, and a particle filter [Doucet et al., 2000] tuned to the
domain for belief tracking. Their approach involves 65,000
simulations per action and takes in the order of 2 seconds per
game, while ours takes 0.0096 seconds per game.

Minesweeper
We consider Minesweeper instances overm×n grids contain-
ing k randomly placed mines. The problem can be described
with 3mn boolean state variables minex,y , openedx,y and
flaggedx,y that denote the presence/absence of a mine at
cell (x, y) and whether the cell has been opened or flagged,
and mn observable variables obsx,y with domain D =

4A real-time animation for Minesweeper can be found at
https://www.youtube.com/watch?v=U98ow4n87RA.

5This is a rich encoding that allows to observe when a ship has
been fully sunk. In the experiments, this observation was not used
in order to compare with the work of Silver and Veness [2010].
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avg. time per

dim #mines density %win #guess decision game

8× 8 10 15.6% 83.4 606 8.3E-3 0.21
16× 16 40 15.6% 79.8 670 1.2E-2 1.42
16× 30 99 20.6% 35.9 2,476 1.1E-2 2.86
32× 64 320 15.6% 80.3 672 1.3E-2 2.89

Table 2: Minesweeper. Averages over 1,000 runs. Time is in
seconds.

{0, . . . , 9}. There are two type of actions open(x, y) and
flag(x, y) where the first has no precondition and the sec-
ond ¬minex,y . The sensor model is given by formulas
that specify the integer that receives the agent when open-
ing a cell in terms of the value minex′,y′ for the surround-
ing cells. The goal of the problem is to get the disjunction
flaggedx,y ∨ openedx,y for each cell (x, y), provided that
opening a cell with a mine causes termination. The causal
beams contain at most 9 boolean variables, even though the
width of the problem is 3mn.

Table 2 shows results for the three standard levels of the
game and a much larger instance. As in Battleship, the greedy
policy uses the beliefs computed by beam tracking, flagging
or opening a cell when certain about its content, else selecting
the cell with the most extreme probability, and flagging or
opening it according to its likely content. The results shown
in the table are competitive with those recently reported by
Lin et al. [2012], which are achieved with a combination of
UCT for action selection, and a domain-specific CSP solver
for tracking beliefs. The success ratios that they report are:
80.2±0.48% for the 8×8 with 10 mines, 74.4±0.5% for the
16×16 with 40 mines, and 38.7±1.8% for the 16×30 with 99
mines. The authors do not report times, but as in Battleship,
the time required for selecting actions is likely to be orders-
of-magnitude larger than the time taken by our algorithm.

Wumpus
An m × n instance of Wumpus [Russell and Norvig, 2009]
is described with known state variables for the agent’s posi-
tion and orientation, and hidden boolean variables for each
cell that tell whether there is a pit, a wumpus, or nothing at
the cell. One more hidden state variable stores the position
of the gold. The observable variables are boolean: glitter,
breezex,y , stenchx,y and deadx,y , with (x, y) ranging over
the different cells. The actions are move forward, rotate right
or left, and grab the gold. The causal width for the encoding
is 6 while the problem width grows with the grid size.

Table 3 shows results for different grid sizes and number of
pits and wumpus for a greedy policy based on a heuristic that
returns the minimum cost of a safe path to the nearest cell that
may contain the gold. The beliefs computed by beam tracking
are used to determine which cells are safe (known to contain
no wumpus or pit) and may contain the gold. As the table
shows, very large instances are solved in real time. Moreover,
the unsolved instances were all proven to be unsolvable using
the information gathered by the agent and a SAT solver.

We also considered a simpler version of Wumpus that has
been used as a benchmark for testing off-line and on-line con-
tingent planners. In this version, there are no pits, the agent

avg. time per

dim #p/#w %den #decisions %win decision game

5× 5 1 / 1 8.0 22,863 93.6 3.8E-4 8.7E-3
10× 10 2 / 2 4.0 75,507 98.3 9.6E-4 7.2E-2
15× 15 4 / 4 3.5 165,263 97.9 1.6E-3 2.6E-1
20× 20 8 / 8 4.0 295,305 97.8 2.4E-3 7.2E-1
25× 25 16 / 16 5.1 559,595 94.0 3.8E-3 2.1
30× 30 32 / 32 7.1 937,674 89.0 4.7E-3 4.4
40× 40 128 / 128 16.0 4,471,168 7.3 2.8E-3 12.7
50× 50 512 / 512 40.9 7,492,503 0.1 1.3E-2 100.4

Table 3: Wumpus. Averages over 1,000 runs. Column
‘#p/#w’ refers to number of hidden pits and wumpus, and
‘%den’ to their density in the grid. Time is in seconds.

is known to start at the bottom-left corner, the gold is known
to be at the opposite corner, and a wumpus is known to be
on the cell below or to the left of each diagonal cell, except
for the first two cells. The problem has a full contingent so-
lution for grids n× n for n ≥ 3. Off-line planners have been
shown to scale up to n = 7 [Albore et al., 2009; To et al.,
2011], while on-line planners to n = 20 [Albore et al., 2009;
Brafman and Shani, 2012]. We tried our K-replanner [Bonet
and Geffner, 2011] that is domain-independent, relies on a
very effective form of belief representation based on liter-
als and invariants, but is however less powerful than beam
tracking. The K-replanner manages to scale up to n = 40.
Beam tracking with the heuristic above yields solutions to
much larger grids, e.g., n > 100, in real-time. Unfortu-
nately, since it’s not possible to try the other planners with
the same action selection mechanism, it is not possible to say
how much of the gap in performance is due to the belief rep-
resentation, and how much to action selection. It must also
be kept in mind that none of the planners handle action non-
determinism which poses no problem for beam tracking.

10 Summary

We have introduced a causal decomposition scheme in be-
lief tracking for planning along with a new algorithm, causal
belief tracking, that is provably complete for a broad range
of domains. CBT is time exponential in the problem width,
and space exponential in the often much smaller causal width.
We then introduced a second algorithm, beam tracking, as a
meaningful approximation of CBT that is both time and space
exponential in the problem causal width. The empirical re-
sults in Battleship, Minesweeper, and Wumpus, where very
large instances are solved in real-time with a greedy policy
that is defined on top of these beliefs, suggest that the al-
gorithm may be practical enough, managing to track beliefs
effectively and efficiently over large deterministic and non-
deterministic spaces.
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