
Policies that Generalize: Solving Many Planning Problems with the Same Policy

Blai Bonet
Universidad Simón Bolı́var

Caracas, Venezuela
bonet@ldc.usb.ve

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, SPAIN
hector.geffner@upf.edu

Abstract

We establish conditions under which memory-
less policies and finite-state controllers that solve
one partially observable non-deterministic problem
(PONDP) generalize to other problems; namely,
problems that have a similar structure and share the
same action and observation space. This is relevant
to generalized planning where plans that work for
many problems are sought, and to transfer learn-
ing where knowledge gained in the solution of one
problem is to be used on related problems. We use a
logical setting where uncertainty is represented by
sets of states and the goal is to be achieved with cer-
tainty. While this gives us crisp notions of solution
policies and generalization, the account also ap-
plies to probabilistic PONDs, i.e., Goal POMDPs.

1 Introduction
Consider a vacuum cleaning robot in a linear 1 × 5 grid,
with the robot initially in the leftmost cell, and each of
the n cells being either clean or dirty [Russell and Norvig,
2002]. If the robot can sense whether the current cell is
clean or not, and whether it is in the last (rightmost) cell,
the goal of having all cells clean can be achieved with the
policy “if dirt, suck it; if clean and not in the last cell,
move right”. This is an example of a memoryless policy
that maps observations into actions. Compact memoryless
policies and finite-state machines are heavily used in robotics
and video games as they provide a simple language for writ-
ing controllers that are robust and general [Murphy, 2000;
Buckland, 2004]. For example, the vacuum cleaning policy
for the 1 × 5 grid will also work in a 1 × 10 grid, and ac-
tually in any 1 × n grid. Moreover, it will work no matter
how dirt is distributed, and even when the actions of moving
right and sucking dirt may fail to achieve their effects some-
times. All these problem variations indeed appear to share a
common structure, aside from the same set of actions and ob-
servations, and once the policy is derived from one problem it
applies to all the variations. It is however not straightforward
to pinpoint what is the common structure that supports such
generalization. Indeed, what does the 1× 5 instance with dirt
all over has in common with the 1× 10 instance where dirt is

in the second cell only? What do these instances have in com-
mon with non-deterministic variants where actions may fail?
And, what part of the structure is missing when the policy
does not work?

Our aim in this paper is to provide a characterization of
the common structure that allows for policy generalization.
We use a logical setting where uncertainty is represented by
sets of states and the goal is to be achieved with certainty.
In this setting, the notions of solution policy and generaliza-
tion become very crisp: a policy solves a problem or not,
and it generalizes to another problem or not. We thus ig-
nore considerations of costs, quality or rewards, and do not
consider probabilities explicitly. Our results, however, do ap-
ply to the probabilistic setting where goals are to be achieved
with probability 1. This is a result of the correspondence be-
tween proper policies in stochastic systems and strong cyclic
policies in purely non-deterministic ones [Bertsekas, 1995;
Cimatti et al., 1998; Geffner and Bonet, 2013]. The theme
of policies that are general has surfaced in generalized plan-
ning [Hu and De Giacomo, 2011; Srivastava et al., 2011a]
and reinforcement learning [Taylor and Stone, 2009], and the
relation to these research threads will be discussed.

The paper is organized as follows. We introduce the model
and memoryless policies, define reductions, consider refine-
ments, and extend the results to finite-state controllers. We
also illustrate the ideas on examples and discuss related work.

2 Model, Policies, Solutions
A partially observable non-deterministic problem (PONDP)
is a tuple P = 〈S, S0, T, A, F, o〉 where

1. S is a finite set of states s,
2. S0 is the set of possible initial states S0 ⊆ S,
3. T is the set of goal states T ⊆ S,
4. A(s) ⊆ A is set of actions applicable in s ∈ S,
5. F (a, s) ⊆ S denotes the successor states, s ∈ S, a ∈ A(s)
6. o is the observation function o(s) ∈ Ωo where Ωo is the

set of possible observations.

PONDPs are similar to POMDPs with deterministic sens-
ing (Partially Observable Markov Decision Processes; [Kael-
bling et al., 1998]) and in particular to Goal POMDPs where
goals have to be achieved with certainty [Bonet and Geffner,
2009]. A key difference is that uncertainty is represented by



sets of states rather than probability distributions. For poli-
cies that must achieve the goal with certainty, however, the
distinction is irrelevant; all that matters is which observations
and state transition are possible, not their exact numerical
probabilities [Bertsekas, 1995]. Similarly, noisy sensing can
be compiled into deterministic sensing by extending the states
with the observations [Chatterjee and Chmelı́k, 2015].

The basic notions are reviewed next. A sequence τ =
〈s0, s1, . . .〉 of states is a state trajectory in P iff s0 ∈ S0

and for every state si+1 in τ there is an action ai in A(si)
such that si+1 ∈ F (ai, si). A trajectory τ reaches a state s if
τ contains s, and τ is goal reaching if it reaches a goal state.
A state s is reachable if there is a trajectory that reaches s.

A memoryless policy is a partial function µ : Ωo → A
where µ(ω) is the action prescribed in all the states s with
o(s) = ω, with the only restriction that the action µ(ω)
must be applicable at s; µ(o(s)) ∈ A(s). The trajecto-
ries generated by µ, called the µ-trajectories, are the fi-
nite or infinite sequences 〈s0, s1, . . .〉 where s0 ∈ S0, and
si+1 ∈ F (µ(o(si)), si) for all the states si+1 in the sequence.
A µ-trajectory is maximal if it is infinite or it if it ends in
a state s for which µ(o(s)) is undefined. Sometimes ac-
tions are included in µ-trajectories which are then denoted
as 〈s0, a0, s1, a1, s2, . . .〉 where ai = µ(o(si)). A state is
reachable by µ if there is a µ-trajectory that reaches the state.

A transition in P is a triplet (s, a, s′) such that s′ ∈ F (a, s)
and a ∈ A(s). A transition (s, a, s′) occurs in a trajectory
〈s0, a0, s1, a1, . . .〉 if for some i, s = si, a = ai, and s′ =
si+1. A trajectory τ is fair if it is finite and maximal, or if
for any two transitions (s, a, s′) and (s, a, s′′) in P for which
s′ 6= s′′, if one transition occurs infinitely often in τ , the other
occurs infinitely often in τ as well.

A policy µ solves P iff every fair µ-trajectory is goal reach-
ing. If µ solves P , µ is said to be a solution to P , and a
valid policy for P . Solutions are thus strong cyclic policies
[Cimatti et al., 1998]. A solution µ is strong when the fair
µ-trajectories are all finite and end in a goal state.

3 Characterizing the Common Structure
We define a structural relation among PONDPs and establish
properties that follow from it. The reduction of a problem P
into a “smaller” problem P ′ allows us to establish sufficient
conditions under which a policy that solves P ′ also solves the
“larger” problem P .

Definition 1 (Reduction). Let P = 〈S, S0, T, A, F, o〉 and
P ′ = 〈S′, S′0, T ′, A′, F ′, o′〉 be two problems with the same
sets of observations; i.e., Ωo = Ωo′ . A function h : S → S′

reduces P to P ′ iff

R1. A′(h(s)) ⊆ A(s) for all s ∈ S,
R2. o(s) = o′(h(s)) for all s ∈ S,
R3. if s′ ∈ F (a, s) then h(s′) ∈ F ′(a, h(s)) for all s, s′ ∈ S

and a ∈ A′(h(s)),
R4. if s0 ∈ S0 then h(s0) ∈ S′0 for all s0 ∈ S0,
R5. if s 6∈ T then h(s) 6∈ T ′ for all s ∈ S.

The intuition for R1–R5 is that a reduction 1) doesn’t intro-
duce non-applicable actions, 2) preserves observations, and

3) maps transitions into transitions, initial states into initial
states, and non-goal states into non-goal states.

Reductions are not symmetric in general, and thus, they are
different than other types of relations among structurally sim-
ilar problems like bisimulations [Milner, 1989]. In particular,
deterministic systems can be reduced into non-deterministic
systems but the opposite reduction may not be feasible.

Example: Countdown. Let us first consider the problem of
driving a state counter from some value to zero using the ac-
tions Inc and Dec, and a sensor that tells if the goal has been
achieved. The problem is the tuple Pn = 〈S, S0, T, A, F, o〉
where S = {0, 1, . . . , n}, S0 = S, T = {0}, A contains
the actions Inc and Dec, o(s) is 0 or “+” respectively iff
s is 0 or positive, and s′ ∈ F (a, s) iff s′ = s + 1 when
a = Inc and s < n, s′ = s − 1 when a = Dec and s > 0,
and else, s = s′. The simple policy µ where µ(ω) = Dec
if ω = + solves the problem. The function h(s) = 0 if
s = 0 and h(s) = 1 if s > 0 maps the problem Pn into the
abstract and smaller problem P ′ = 〈S′, S′0, T ′, A′, F ′, o′〉
where all positive states in Pn are represented by a single
state. More precisely, S′ contains just the two states 0 and
1, S′0 = S′, T ′ = T , A′ = A, o(s′) is 0 or + according to
whether s′ is 0 or 1, F ′(a, 0) = F (a, 0) for a ∈ {Inc,Dec},
F ′(Dec, 1) = {1, 0}, and F ′(Inc, 0) = F ′(Inc, 1) = {1}.
The function h reduces the deterministic problem Pn, for any
n, into a single non-deterministic problem P ′ where non-
determinism is used in the transition F ′(Dec, 1) = {1, 0}
to capture the possible transitions from different states s in
Pn that are reduced to the same state h(s) = 1 in P ′.

Clearly, the h-mapping satisfies R1, R2, R4, and R5 as it
doesn’t introduce non-applicable actions (P and P ′ have the
same actions and they are always applicable), s and h(s) give
rise to the same observations, initial states of Pn map into
initial states of P ′, and non-goal states are preserved (i.e. s 6=
0 implies h(s) 6= 0). It is also simple to check that h satisfies
condition R3. Thus, h reduces Pn to P ′. Since this reduction
works for any n > 1, this means that all problems Pn can be
reduced to the problem P ′ where a single state is being used
to represent n states in Pn. The memoryless policy µ(ω) =
Dec if ω = + solves P ′ and each problem Pn. �

We turn now to the conditions under which a policy that
solves a problem P ′ will also solve problems that can be re-
duced to P ′. First of all, from the definition above, it follows
that when h reduces P into P ′, any memoryless policy µ for
P ′ is a memoryless policy for P ; i.e., µ is executable in P :1

Theorem 2 (Executability). If µ is a policy for P ′ and h re-
duces P into P ′, then µ is a policy for P .

We consider next the trajectories τ generated by the pol-
icy µ in P , and the sequences h(τ) that such trajecto-
ries induce over P ′, where h(τ) is the trajectory τ =
〈s0, a0, s1, a1, . . .〉 with the states si replaced by h(si); i.e.,
h(τ) = 〈h(s0), a0, h(s1), a1, . . .〉. The first result is that
when h is a reduction of P into P ′, h maps trajectories τ
generated by a policy µ in P into sequences h(τ) that are
µ-trajectories in P ′:

1Formal proofs omitted for lack of space.



Theorem 3. For a reduction h of P into P ′, if µ is a policy
for P ′ and τ = 〈s0, a0, s1, a1, . . .〉 is a µ-trajectory in P ,
then h(τ) is µ-trajectory in P ′.

From R5, it follows that if the µ-trajectory τ doesn’t reach
a goal in P , the µ-trajectory h(τ) doesn’t reach a goal in P ′
either. If µ is a solution of P ′, however, and the µ-trajectory
h(τ) is fair, then h(τ) must reach the goal in P ′. Hence,
Theorem 4 (Structural Generalization). Let µ be a policy that
solves P ′ and let h be a reduction from P into P ′. Then µ
solves P if h maps the fair µ-trajectories τ in P into trajec-
tories h(τ) that are fair in P ′.

We’ll illustrate the use of this theorem and some of its
corollaries below. A first corollary is that a sufficient con-
dition for a policy µ to generalize from P ′ to a problem P
that can be reduced to P ′ arises when µ is terminating in P :
Theorem 5. Let µ be a policy that solves P ′. The policy µ
solves a problem P that can be reduced to P ′ if all the fair
µ-trajectories in P are finite.

One way in which we’ll be able to show the termination
of a policy µ on problems P is by showing that the policy µ
is monotonic, meaning that when action µ(o(s)) is applied to
any (non-goal) state s, then s will not be reachable from the
resulting states s′ while following the policy. Often this can
be shown with structural arguments in a simple manner. For
example, in the Countdown problem, if s > 0 and µ(o(s)) =
Dec, then s won’t be reachable from the resulting state if the
policy µ doesn’t include the action Inc in some (reachable)
state. Clearly if a policy µ is monotonic in P , then µ must
terminate in P . In other cases, however, showing termination
may be as hard as showing that µ solves the problem itself.

Example: Countdown (continued). The problem Pn with
n + 1 states i = 0, . . . , n reduces to the non-deterministic
problem P ′ with 2 states through the function h(0) = 0 and
h(i) = 1 for i > 0. The policy µ(ω) = Dec for ω = + solves
P ′ because (1, Dec, 0) ∈ F ′ and hence fair µ-trajectories that
start in the state 1 in P ′ reach goal 0. Theorem 5 says that µ
solves Pn for any n > 1 if µ-trajectories in Pn terminate,
which holds since µ is monotonic (see above).

It’s also important to see variations on which the general-
ization does not work. For this, let P ′n be a problem like Pn
but with a “buggy” Dec action that sets the counter back to n
from 1; i.e., with F (Dec, 1) = {n}. The function h still re-
duces P ′n into P ′ because the new transition n ∈ F (Dec, 1)
requires the transition h(n) ∈ F ′(Dec, h(1)) which is true
in F ′ as h(n) = h(1) = 1 and 1 ∈ F ′(Dec, 1). Yet, the µ-
trajectories τ that start in any state i > 0 in P ′n, consist of the
sequence i, i− 1, . . . , 1 followed by the loop n, n− 1, . . . , 1.
Such trajectories τ are fair in P ′n, that is deterministic, but
result in trajectories h(τ) = 〈1, Dec, 1, Dec, . . .〉 that are not
fair in P ′, as the transition (1, Dec, 0) in P ′ never occurs.
Thus, h reduces P ′n into P ′ but does not reduce fair trajecto-
ries in P ′n into fair trajectories in P ′, and Theorem 4 can’t be
used to generalize µ from P ′ into P ′n. �

4 The Structure of Abstract Problems
In the Countdown example, the non-deterministic problem
P ′ is used to show that the policy that solves the instance

P1 generalizes to any instance Pn, n > 1. The problem P ′,
however, is very similar to P1; indeed, it is the problem P1

with an additional state transition (s, a, s′) for a = Dec and
s = s′ = 1. As we will see, this pattern is common, and
we will often show that a solution to P generalizes to another
problemQ in the same class by considering a problem P ′ that
is like P but augmented with an extra set of possible transi-
tions E. We make explicit the structure of such problems P ′
by writing them as P +E. Recall that a transition (s, a, s′) is
in P when a is applicable in s and s′ is a possible successor,
i.e., a ∈ A(s) and s′ ∈ F (a, s).

Definition 6 (Admissible Extensions). Let µ be a policy for
problem P . An extension E to P given µ is a set of triplets
(s, a, s′) for states s and s′ in P and a = µ(s) such that
(s, a, s′) is not a transition in P . The extension is admissible
if each state s′ in such triplets is reachable by µ in P .

Definition 7 (Structured Abstractions). Let µ be a policy for
P and let E be an admissible extension to P given µ. P +E
denotes the problem P augmented with the transitions in E.

In Countdown, P ′ is P1 + E where E = {(s,Dec, s)} for
s = 1 is an admissible extension. Clearly,

Theorem 8. If µ is a policy that solves P , and E is an ad-
missible extension of P given µ, µ solves P + E.

For using the structure of problems P +E for generalization,
however, a corresponding notion of fairness is required:

Definition 9 (P -fairness). Let µ be a policy for P and let E
be an admissible extension of P given µ. A µ-trajectory τ
in P + E is P -fair if for any transition (s, a, s′) in P that
occurs infinitely often in τ , other transitions (s, a, s′′) in P
occur infinitely often in τ too.

In other words, a trajectory τ generated by µ in P + E is
P -fair if it doesn’t skip P -transitions forever although it may
well skip E transitions. Our main result follows:

Theorem 10 (Main). Let µ be a policy that solves P and let
h be a reduction from a problem Q into P + E where E is
an admissible extension of P given µ. Then µ solves Q if h
maps the fair µ-trajectories τ in Q into trajectories h(τ) that
are P -fair in P + E.

Thus a policy µ for P generalizes to Q if 1) Q is struc-
turally similar to P in the sense that Q can be reduced to
P +E, and 2) the reduction h maps µ-trajectories τ in Q into
h(τ) trajectories in P + E that eventually evolve according
to P , not P + E. Theorem 4 is a special case of this result
when E is empty. When P is deterministic, P -fairness can
be shown by bounding the number of E-transitions in the ex-
ecutions:

Theorem 11. Let τ be a µ-trajectory for the problem P +E.
If P is deterministic and transitions (s, a, s′) from E occur a
finite number of times in τ , then τ is P -fair.

5 Projections and Restrictions
We consider next two ways of replacing the problems P and
Q mentioned in the theorems by suitable simplifications.



5.1 Projections over the Observations
A standard way by which a problem P can be reduced into
a smaller problem P ′ is by projecting P onto the space of
observations. We formalize this in terms of a function hobs
and a projected problem P o:

Definition 12. For P = 〈S, S0, T, A, F, o〉, the function hobs
is defined as hobs(s) = o(s), and the problem P o as the tuple
P o = 〈S′, S′0, T ′, A′, F ′, o′〉 with

1. S′ = {ω | ω ∈ Ωo},
2. A′(ω) = ∩sA(s) for all s in S such that o(s) = ω,
3. o′(ω) = ω,
4. ω′ ∈ F ′(a, ω) iff there is s′ ∈ F (a, s) such that ω = o(s),
ω′ = o(s′), and a ∈ A′(ω),

5. S′0 = {o(s) | s ∈ S0},
6. T ′ = {o(s) | s ∈ T}.

By construction, the function hobs complies with condi-
tions R1–R4 for being a reduction of problem P into P o but
it does not necessarily comply with R5. For this, an extra
condition is needed on P ; namely, that goals states s are ob-
servable; i.e., o(s) 6= o(s′) when s ∈ T and s′ /∈ T :

Theorem 13. If P = 〈S, S0, T, A, F, o〉 is a problem with
observable goals, hobs(s) reduces P into P o.

It follows that if a policy µ solves P o, µ solves P too if the
goals are observable and µ terminates in P .

5.2 Restricted Problems
For showing that a policy µ generalizes from a problem P to
a family of problems Q, it is not necessary to use reductions
that consider all actions and states. Suitable restrictions can
be used instead:

Definition 14. A restriction PR of P = 〈S, S0, T, A, F, o〉
is a problem PR = 〈SR, S0, TR, AR, FR, oR〉 that is like P
except for 1) the sets AR(s) of actions applicable at state s
may exclude some actions from A(s), and 2) the set SR of
states excludes from S those that become unreachable. TR
is T ∩ SR, while FR and oR are the functions F and o in P
restricted to the states in SR.

A particular type of restriction PR arises when the sets of
applicable actions is restricted to contain a single action, and
in particular, the action determined by µ. We denote with Pµ
the restriction PR of P where AR(s) = {µ(o(s))} for each
state s. For a policy µ to generalize from P to Q, it suffices
to consider functions h that reduce Qµ into Pµ + E:

Theorem 15. Let µ be a policy that solves P and let h be
a reduction from Qµ into Pµ + E where E is an admissible
extension of P given µ. Then µ solves Q if h maps the fair
µ-trajectories τ in Qµ into trajectories h(τ) that are P -fair
in Pµ + E.

Restrictions also enable the use of the reduction hobs in
problems where the goals are not observable. Indeed, Pµ re-
duces to P oµ if the states s that may be confused with goal
states s′ in P are not reachable by µ in P .

6 Examples
Dust-Cleaning Robot. There is a 1 × n grid whose cells
may be dirty or not, and a cleaning robot that is positioned
on the leftmost cell. The task for the robot is to clean all the
cells. The actions allow the robot to move right and to suck
dirt. Formally, P = Pn is the problem 〈S, S0, T, A, F, o〉
whose states are of the form 〈i, d1, . . . , dn〉, where i ∈ [1, n]
denotes the robot location and dk ∈ {0, 1} denotes whether
cell k is clean or dirty. The set S0 contains the 2n states
〈1, d1, . . . , dn〉 where the robot is at the leftmost cell. The
set T of goals contains all states 〈i, d1, . . . , dn〉 where each
dk = 0. The actions in A are Suck and Right, both applica-
ble in all the states, with F (Suck, 〈i, d1, . . . , di, . . . , dn〉) =
{〈i, d1, . . . , 0, . . . , dn〉}, F (Right, 〈i, d1, . . . , dn〉) = {〈i +
1, d1, . . . , dn〉} for i < n, and F (Right, 〈i, d1, . . . , dn〉) =
{〈i, d1, . . . , dn〉} for i = n. The observation function o is
such that o(〈i, d1, . . . , dn〉) is the pair 〈o1, o2〉 where o1 ∈
{e,m} reveals the end of the corridor (e), and o2 ∈ {d, c}
whether the current cell is dirty or clean.

We consider a reduction of the deterministic problem Pn
with n×2n states into the problem P +E with 8 states where
P is P2, and E comprises two transitions (s, a, s′) where s =
〈1, d′1, d′2〉, a = Right, and s′ is either 〈1, 0, d′2〉 or 〈1, 1, d′2〉.
That is, P + E is like P2 but when the robot is not in the
rightmost cell, the action Right can “fail” leaving the robot
in the same cell, making the cell either clean or dirty.

The policy µ, µ(〈o1, o2〉) = Suck if o2 = d, and
µ(〈o1, o2〉) = Right if o1 = m and o2 = c, solves the
problem P2 and can be shown to solve any problem Pn.
For this, the restriction Qµ of Q = Pn can be reduced
into the restriction Pµ + E for P = P2 with the function
h(〈i, d1, . . . , dn〉) = 〈i′, d′1, d′2〉 such that i′ = 1 and d′1 = di
for i < n, and else i′ = 2 and d′1 = 0, with d′2 = dn in
both cases. In addition, since the policy µ terminates in any
problem Pn as it’s monotonic (actions Suck and Right in µ
have effects that are not undone by µ), the trajectories h(τ) in
Theorem 15 must be finite and fair, from which it follows that
µ solves Pn for any n and any initial configuration of dirt. �

Wall Following. We consider next the problem of finding
an observable goal in a room with some columns. The agent
can sense the goal and the presence of a wall on its right side
and in front. The actions are move forward (F ), rotate left
(L) and right (R), and rotate left/right followed by a forward
movement (LF /RF ). An n ×m instance is a tuple Pn,m =
〈S, S0, T, A, F, o〉 whose states s are of the form (c, d) where
c ∈ [1, n]× [1,m] is a cell in the grid and d ∈ {n, s, e, w} is
the heading of the agent. The initial state is (1, 1, e) and the
observable goal state is associated with a goal cell. The state
transitions are the expected ones, except that actions that try
to leave the grid and actions that are applied at states (c, d)
where c is in a column have no effect. For simplicity, the
columns are modeled as observable cells to be avoided. The
observation function o maps each state s into an observation
in Ωo = { , B , B , B } where o(s) = if s ∈ T , and o(s)
is B , B , or B according to whether the agent senses wall
on its right side and front.

The wall-following policy µ that we consider executes F
when observing B , L when observing B , andRF when ob-



1 2 3 4 5

1

2

3

4

`1 `2

`3

`4 `5 `6

`7

`8 `9
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

`1 `2 `8 `8 `2 `8 `9

`3 `7 `3 `7

`3 `7 `4 `5 `6

`4 `5 `5 `6

Figure 1: Two wall following problems P (Left) and Q (Right),
along with µ-trajectories that end at the goal. Policy µ for P solves
problems Q with any number of columns of any width and height.

serving B . We want to illustrate how this policy generalizes
to the class of Pn,m problems consisting of any number of
columns separated by two or more spaces, where the columns
have any height shorter than m− 1 and any (positive) width,
and the goal is in first row to the right of an empty cell. The
policy generalizes to a larger class of problems but these re-
strictions are sufficiently general and make the analysis sim-
pler.

Figure 1 shows the problem P in this class that we use to
show that µ solves the other problems such as the one shown
on the right. The set of transitions E needed to reduce any
Qµ to Pµ + E includes the triplets (s, a, s′) where a = F
and 〈s, s′〉 is either 〈(`8, e), (`2, e)〉, or 〈(`i, d), (`i, d)〉, for
i = 3, 5, 7, 8, any heading d, and the cells `i shown on the
left of Figure 1.

The function h that reduces Qµ into Pµ + E maps states
(c, d) in Qµ into states (g(c), d) in Pµ +E, while preserving
the heading d. The function g is obtained from the cell label-
ing shown in Fig. 1; namely, g(c) = c′ if cell c in Qµ has the
label c′ which corresponds to a particular cell in Pµ on the
left. While we are showing the function g for the particular
problem Q shown, g can be defined to apply to any problem
in the class.

In order to apply Theorem 15, we need to prove that h is
a reduction, that E is an admissible extension of P given µ,
and that the single trajectory τ generated by µ in Q maps into
a trajectory h(τ) where E-transitions occur a finite number
of times. The first two parts are left to the reader. The right
part of Fig. 1 shows the trajectory τ that is finite so that the
last condition is true as well. One could prove such termi-
nation by monotonicity arguments but more insight can be
gained by looking at the trajectory h(τ) where states s in
τ are replaced by h(s). The sequence of cells in the states
appearing in h(τ) corresponds to the sequence of labels `i
shown in the figure on the right. Interestingly, it’s possible
to show that the set of label sequences that result for the
different problems Q for which Theorem 15 applies given
P , E, and h as above, corresponds to a regular language;
namely, the language that is captured by the regular expres-
sion `+1 (`22`

+
3 `4`

+
5 `6`

+
7 `8`

+
8 )∗`9. �

7 Finite-State Controllers
A finite-state controller (FSC) is a tuple C = 〈Q,A,Ω, δ, q0〉
whereQ is the set of controller states, A and Ω are sets of ac-
tions and observations, q0 ∈ Q is the initial controller state,
and δ is (partial) transition function that maps controller state
and observation pairs 〈q, o〉 ∈ Q × Ω into action and con-
troller state pairs 〈a, q′〉 ∈ A × Q. A controller C can also

be represented by tuples 〈q, o, a, q′〉 that express that the tran-
sition function δ maps the pair 〈q, o〉 into the pair 〈a, q′〉.

A controller C generates a C-trajectory made of interleaved
sequences of pairs and actions where the pairs bundle a prob-
lem state s with a controller state q. That is, a C-trajectory is
a sequence 〈(s0, q0), a0, (s1, q1), a1, . . .〉 where s0 ∈ S0 and
q0 is the initial controller state, si+1 ∈ F (ai, si) for i ≥ 0,
and C contains the tuples 〈qi, oi, ai, qi+1〉 where oi = o(si)
for i ≥ 0. A controller C for a problem P must be executable
and hence we assume that a tuple 〈q, o, a, q′〉 in C implies
that a ∈ A(s) for every state s with o(s) = o. A controller C
solves P if all the fair C-trajectories τ that it generates reach
a goal state, where a trajectory is fair if it is finite and maxi-
mal, or transitions 〈(s, q), a, (s′, q′)〉 appear infinitely often in
τ when transitions 〈(s, q), a, (s′′, q′′)〉 appear infinitely often
for s′′ 6= s′ and s′ ∈ F (a, s). The key difference with mem-
oryless policies is that the action ai selected at step i does not
depend only on the observation oi but also in the controller
state qi. The notions and results for memoryless controllers
extend in a natural way to FSCs:
Theorem 16. If C is a controller that solves P ′ and h re-
duces P into P ′, then C is controller for P , and for every
C-trajectory τ generated by C in P , there is a C-trajectory
h(τ) generated by C in P where h(τ) is τ with the (problem)
states s replaced by h(s).
Theorem 17. Let C be a finite-state controller that solves P
and let h reduce Q into P + E where E is admissible exten-
sion of P given C. Then C solves Q if the fair C-trajectories τ
in Q map into trajectories h(τ) that are P -fair in P + E.

A C-trajectory τ is P -fair in P + E when the sequence of
states and actions in τ is P -fair in the sense defined above
(no P -transitions skipped for ever). As before, the function
h does not need to reduce Q into P + E when the controller
C is given, it suffices to reduce QC into PC + E where PC
is the restriction of P under C. That is, if PT is defined as
the problem P with the transitions (s, a, s′) that are not in T
excluded, PC is PT where T is the set of transitions (s, a, s′)
in P that appear in some C-trajectory. With this notion,
Theorem 18. Let C be a finite-state controller that solves P
and let h reduceQC into PC+E whereE is admissible exten-
sion of P given C. Then C solves Q if the fair C-trajectories τ
in QC map into trajectories h(τ) that are P -fair in PC + E.

Example: Visual Marker. This problem is from Bonet et al.
[2009], inspired by the use of deictic representations [Chap-
man, 1989; Ballard et al., 1997], and where a visual marker
needs to be placed over a hidden green block in a scene that
contains a number of block towers. The marker can be moved
one cell at a time in each of the four directions. Observations
are ‘G’ for the green block, and pairs where the first compo-
nent tells whether the marker is next to the table (‘T’) or not
(‘−’), and the second whether the cell beneath the marker is
empty (‘C’) or a non-green block (‘B’). An (n,m) instance
represents a scene in a n × m grid where the towers do not
reach the ‘roof’, the marker is initially located at the empty
cell (1, 1), and exactly one block is green. A simple instance
P is shown in Fig. 2 along with the controller C derived by
Bonet et al., while a larger instance Q is shown in Fig. 3(b).



q0 q1

−B/Up
TB/Up
TC/Right −B/Down

−C/Down

TB/Right

Figure 2: a) In problem P on the left, marker shown as ‘eye’ must
be placed on hidden green block. b) FSC C with 2 states that solves
P and any problem in the class.

The states in P are the pairs (c, g) where c, g ∈ [1, 5] ×
[1, 4] are the cells for the marker and the hidden green block
respectively. The actions affect the cell for the marker leav-
ing the other cell intact. The initial states are the pairs (c, g)
where c = (1, 1) and g is one of the 3 cells in the second
tower which we denote as gi for i = 1, 2, 3 from the bottom
up. The goal states are the pairs (gi, gi) for i = 1, 2, 3. The
observation function in P encodes the map as in Wall Follow-
ing, so that the observation for the state (c, d) for c = (2, 2)
and d = (4, 3) is −B, and for c = d = (4, 3) is G.

For proving that the controller C for P generalizes to any
problem Q, we consider a general reduction function h and
extension E. The states s = (c, g) in QC are mapped into
states h(s) = (f1(c, g), f2(g)) in PC that decompose h into
two functions: one f2, mapping goal cells into goal cells, the
other f1, mapping marker cells into marker cells with a de-
pendence on the goal cell. The function f2(g) is (4, 1) if
g = (x, 1), (4, 2) if g = (x, 2), and (4, 3) if g = (x, y)
for y > 2. For describing the function f1(c, g) from states
s = (c, g) in QC into marker cells in PC , we label the lat-
ter as `1 to `8 as shown in Fig. 3 and consider two cases. If
c = (x, y), g = (x′, y′) and y = y′, then the marker is in the
goal tower in Q. Such states s = (c, d) are mapped into cells
in the goal tower in P ; i.e. f1(c, d) = (4, y′′) where y′′ = y
if y < 3 and y′′ = 3 otherwise. On the other hand, if y 6= y′,
f1(c, d) is mapped into the unique cell in {`1, . . . , `4} in PC
that give rise to the same observation as (c, g) inQC . Fig. 3(b)
shows the values of the function f1(c, g) for g = (5, 2) and
the various cells c in QC for the particular problem Q shown.

The set of transitions E required for h to reduce QC into
PC+E expresses the idea in which the C-trajectories τ inQC
get mapped into trajectories h(τ) in PC +E that go back and
forth between the non-goal towers and empty cells in P until
a goal tower is reached in Q. For this, 27 transitions (s, a, s′)
need to be added to P in E. If s = (c, g) and s′ = (c′, g′),
g and g′ must be equal, and the 9 transitions for each of the
three g = gi goal cells in P are as follows. For a = Right, if
c = (1, 1), c′ is (1, 1) and (4, 1), and if c = (2, 1), c′ is (1, 1),
(2, 1), and (4, 1). For Up and Down, if c = (2, 2), c′ = c,
and for Up only and c = (4, 2), c′ = c. Finally, for a = Up
and c = (2, 1), c′ = (2, 3). We lack the space for explaining
why all these transitions are needed or to prove formally that
E is an admissible extension of PC given C and that h does
indeed reduce QC into PC + E. Theorem 18 implies that C
solves Q if C-trajectories τ in Q map into trajectories h(τ)
that contain a finite number of E-transitions. One such tra-
jectory τ is displayed in Fig. 3 for the problem Q shown that
follows from the initial state where the hidden green block is
at (5, 2). The labels show the PC-cells visited by the trajec-
tory h(τ) induced over P . �

`1 `2

`3

`4

`5 `6

`7

`8

`1 `2

`3

`4

`1 `2

`3

`3

`4

`6

`7

Figure 3: a) Labeling of the cells in P reached by controller C. b)
C-trajectory τ in Q with P -cell labels in trajectory h(τ).

8 Related Work

Bonet et al. [2009] and Hu and De Giacomo [2013] show
how to derive certain types of controllers automatically. The
generality of these controllers has been addressed formally
in [Hu and De Giacomo, 2011], and in a different form in
[Srivastava et al., 2011a] and [Hu and Levesque, 2011]. A
related generalized planning framework appears in [Srivas-
tava et al., 2011b] that captures nested loops involving a set
of non-negative variables that may be increased or decreased
non-deterministically, and where the notion of terminating
strong cyclic policies plays a central role. A key difference
to these works is that our approach is not “top down” but
“bottom up”; namely, rather than solving a (harder) gener-
alized problem to obtain a general solution, we look at so-
lutions to easy problems and analyze how they generalize to
larger problems. Our reductions are also related to abstrac-
tion and transfer methods in MDP planning and reinforce-
ment learning [Li et al., 2006; Konidaris and Barto, 2007;
Taylor and Stone, 2009]. One difference is that these for-
mulations use rewards rather than goals, and hence the ab-
stractions are bound to either preserve optimality (which is
too restrictive) or to approximate reward. Our focus on goal
achievement makes things simpler and crisper, yet the results
do apply to the computation of proper controllers for Goal
MDPs and POMDPs.

9 Discussion

We have studied the conditions under which a controller that
solves a POND problem P will solve a different problem Q
sharing the same actions and observations. A practical con-
sequence of this is that there may be no need for complex
models and scalable algorithms for deriving controllers for
large problems, as often, controllers derived for much smaller
problems sharing the same structure will work equally well.
The shared structure involves a common set of actions and
observations, which in itself, is a crisp requirement on prob-
lem representation. For example, policies for a blocksworld
instance won’t generalize to another instance when the ac-
tions involve the names of the blocks. The same holds for
MDP policies expressed as mappings between states and ac-
tions. The appeal of so-called deictic or agent-centered rep-
resentations [Chapman, 1989; Ballard et al., 1997; Konidaris
and Barto, 2007] is that they yield sets of actions and obser-
vations that are not tied to specific instances and spaces, and
hence are general and can be used for representing general
policies.



References
[Ballard et al., 1997] D. Ballard, M. Hayhoe, P. Pook, and

R. Rao. Deictic codes for the embodiment of cognition.
Behavioral and Brain Sciences, 20(4):723–742, 1997.

[Bertsekas, 1995] D. Bertsekas. Dynamic Programming and
Optimal Control, Vols 1 and 2. Athena Scientific, 1995.

[Bonet and Geffner, 2009] B. Bonet and H. Geffner. Solv-
ing POMDPs: RTDP-Bel vs. Point-based Algorithms. In
Proc. IJCAI-09, pages 1641–1646, 2009.

[Bonet et al., 2009] B. Bonet, H. Palacios, and H. Geffner.
Automatic derivation of memoryless policies and finite-
state controllers using classical planners. In Proc. ICAPS-
09, pages 34–41, 2009.

[Buckland, 2004] M. Buckland. Programming Game AI by
Example. Wordware Publishing, Inc., 2004.

[Chapman, 1989] D. Chapman. Penguins can make cake. AI
magazine, 10(4):45–50, 1989.

[Chatterjee and Chmelı́k, 2015] K. Chatterjee and
M. Chmelı́k. POMDPs under probabilistic seman-
tics. Artificial Intelligence, 221:46–72, 2015.

[Cimatti et al., 1998] A. Cimatti, M. Roveri, and P. Traverso.
Automatic OBDD-based generation of universal plans in
non-deterministic domains. In Proc. AAAI-98, pages 875–
881, 1998.

[Geffner and Bonet, 2013] H. Geffner and B. Bonet. A Con-
cise Introduction to Models and Methods for Automated
Planning. Morgan & Claypool Publishers, 2013.

[Hu and De Giacomo, 2011] Y. Hu and G De Giacomo.
Generalized planning: Synthesizing plans that work for
multiple environments. In Proc. IJCAI, pages 918–923,
2011.

[Hu and De Giacomo, 2013] Y. Hu and G De Giacomo. A
generic technique for synthesizing bounded finite-state
controllers. In Proc. ICAPS, pages 109–116, 2013.

[Hu and Levesque, 2011] Y. Hu and H. Levesque. A correct-
ness result for reasoning about one-dimensional planning
problems. In Proc. IJCAI, pages 2638–2643, 2011.

[Kaelbling et al., 1998] L. Kaelbling, M. Littman, and
T. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1–2):99–
134, 1998.

[Konidaris and Barto, 2007] G. Konidaris and A. Barto.
Building portable options: Skill transfer in reinforcement
learning. In IJCAI, pages 895–900, 2007.

[Li et al., 2006] L. Li, T. J. Walsh, and M. Littman. Towards
a unified theory of state abstraction for MDPs. In Proc.
ISAIM, 2006.

[Milner, 1989] Robin Milner. Communication and concur-
rency, volume 84. Prentice Hall, 1989.

[Murphy, 2000] R. R. Murphy. An Introduction to AI
Robotics. MIT Press, 2000.

[Russell and Norvig, 2002] S. Russell and P. Norvig. Arti-
ficial Intelligence: A Modern Approach. Prentice Hall,
2002. 2nd Edition.

[Srivastava et al., 2011a] S. Srivastava, N. Immerman, and
S. Zilberstein. A new representation and associated al-
gorithms for generalized planning. Artificial Intelligence,
175(2):615–647, 2011.

[Srivastava et al., 2011b] S. Srivastava, S. Zilberstein,
N. Immerman, and H. Geffner. Qualitative numeric
planning. In Proc. AAAI, pages 1010–1016, 2011.

[Taylor and Stone, 2009] M. Taylor and P. Stone. Trans-
fer learning for reinforcement learning domains: A sur-
vey. The Journal of Machine Learning Research, 10:1633–
1685, 2009.


