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Heuristics, Planning and Cognition

Hector Geffner

1 Introduction

In the book Heuristics, Pearl studies the strategies for the control of problem solving
processes in human beings and machines, pondering how people manage to solve
an extremely broad range of problems with so little effort, and how machines could
do the same [Pearl 1983, pp. vii]. The central concept in the book, as captured
in the title, are the heuristics: the “criteria, methods, or principles for deciding
which among several alternative courses of action promises to be the most effective
in order to achieve some goal” [Pearl 1983, pp. 3]. Pearl places special emphasis on
heuristics that take the form of evaluation functions and which provide quick but
approximate estimates of the distance or cost-to-go from a given state to the goal.
These heuristic evaluation functions provide the search with a sense of direction
with actions resulting in states that are closer to the goal being preferred. An
informative heuristic h(s) in the 15-puzzle, for example, is the well known ’sum of
Manhattan distances’, that adds up the Manhattan distance of each tile, from its
location in the state s to its goal location.

The book Heuristics laid the foundations for the work in automated problem
solving in Artificial Intelligence (AI) and is still a basic reference in the field. On
the other hand, as an account of human problem solving, the book has not been as
influential. A reason for this is that while the book devotes one chapter to discuss
the derivation of heuristics, most of the book is devoted to the formulation and
analysis of heuristic search algorithms. Most of these algorithms, such as A* and
AO*, are complete and optimal, meaning that they will find a solution if there is
one, and that the solution found will have minimal cost (provided that the heuristic
does not overestimate the true costs). Yet, while people excel at solving a wide
variety of problems almost effortlessly, it’s only in puzzle-like problems where they
need to restore to search, and then, they are not particularly good at it and are
even worse when solutions must be optimal.

Thus, the account of problem solving in the book exhibits a gap that has been
characteristic of AI systems, that result in programs that rival the best human
experts in specialized domains but are no match to children in their general problem
solving abilities.

In this article, I aim to present recent work in AI Planning, a form of domain-
independent problem solving, that builds on Pearl’s work and bears on this gap.
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Planners are general problem solvers aimed at solving an infinite collection of prob-
lems automatically. The problems are instances of various classes of models all of
which are intractable in the worst case. In order to solve these problems effectively
thus, a planner must automatically recognize and exploit their structure. This is
the key challenge in planning and, more generally, in domain-independent problem
solving. In planning, this challenge has been addressed by deriving the heuristic eval-
uations functions automatically from the problems, an idea explored by Pearl and
developed more fully in recent planning research. The resulting domain-independent
planners are not as efficient as specialized solvers but are more general, and thus, be-
have in a way that is closer to people. Moreover, the resulting evaluation functions
often enable the solution of problems with almost no search, and appear to play the
role of the ‘intuitions’ and ‘feelings’ that guide human problem solving and have
been difficult to capture explicitly by means of rules. We will see indeed how such
heuristic evaluation functions are defined and computed in a domain-independent
fashion, and why they can be regarded as relevant from a cognitive point of view.

The organization of the article is the following. We consider in order, planning
models, languages, and algorithms (Section 2), the automatic extraction of heuristic
evaluation functions and other developments in planning (Sections 3 and 4), the
cognitive interpretation of these heuristics (Section 5), and then, more generally,
the relation between AI and Cognitive Science (Section 6).

2 Planning

Planning is an area of AI concerned with the selection of actions for achieving goals.
The first AI planner and one of the first AI programs was the General Problem Solver
(GPS) developed by Newell, Shaw, and Simon in the late 50’s [Newell, Shaw, and
Simon 1958; Newell and Simon 1963]. Since then, planning has remained a central
topic in AI while changing in significant ways: on the one hand, it has become more
mathematical, with a variety of planning problems defined and studied; on the other,
it has become more empirical, with planning algorithms evaluated experimentally
and planning competitions held periodically.

Planning can be understood as representing one of the three main approaches for
selecting the action to do next ; a problem that is central in the design of autonomous
systems, called often the control problem in AI.

In the programming-based approach, the programmer solves the control problem
in its head and makes the solution explicit in the program. For example, for a robot
moving in an office environment, the program may say to back up when too close to
a wall, to search for a door if the robot has to move to another room, etc. [Brooks
1987; Mataric 2007].

In the learning-based approach, the control knowledge is not provided explicitly by
a programmer but is learned by trial and error, as in reinforcement learning [Sutton
and Barto 1998], or by generalization from examples, as in supervised learning
[Mitchell 1997].
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Figure 1. Planning is the model-based approach to autonomous behavior: a planner is a

solver that accepts a compact model of the actions, sensors, and goals, and outputs a plan

or controller that determines the action to do next given the observations.

Finally, in the model-based approach, the control knowledge is derived automati-
cally from a model of the actions, sensors, and goals.

Planning is the model-based approach to autonomous behavior. A planner is a
solver that accepts a model of the actions, sensors, and goals, and outputs a plan
or controller that determines the action to do next given the observations gathered
(Fig. 1). Planners come in a wide variety, depending on the type of model that they
target [Ghallab, Nau, and Traverso 2004]. Classical planners address determinis-
tic state models with full information about the initial situation, while conformant
planners address state models with non-deterministic actions and incomplete in-
formation about the initial state. In both cases, the resulting plans are open-loop
controllers that do not take observations into account. On the other hand, contin-
gent and POMDP planners address scenarios with both uncertainty and feedback,
and output genuine closed-loop controllers where the selection of actions depends
on the observations gathered.

In all cases, the models are intractable in the worst case, meaning that brute
force methods do not scale up to problems involving many actions and variables.
Domain-independent approaches aimed at solving these models effectively must thus
automatically recognize and exploit the structure of the individual problems that
are given. Like in other AI models such as Constraint Satisfaction Problems and
Bayesian Networks [Dechter 2003; Pearl 1988], the key to exploiting the structure
of problems in planning models, is inference. The most common form of inference
in planning is the automatic derivation of heuristic evaluation functions to guide
the search. Before considering such domain-independent heuristics, however, we
will make precise some of the models used in planning and the languages used for
representing them.

2.1 Planning Models

Classical planning is concerned with the selection of actions in environments that
are deterministic and whose initial state is fully known. The model underlying
classical planning can thus be described as a state space featuring:

• a finite and discrete set of states S,

• a known initial state s0 ∈ S,

• a set SG ⊆ S of goal states,
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• actions A(s) ⊆ A applicable in each state s ∈ S,

• a deterministic state transition function f(a, s) for a ∈ A(s) and s ∈ S, and

• positive action costs c(a, s) that may depend on the action and the state.

A solution or plan is a sequence of actions a0, . . . , an that generates a state
sequence s0, s1, . . . , sn+1 such that ai is applicable in the state si and results in the
state si+1 = f(ai, si), the last of which is a goal state.

The cost of a plan is the sum of the action costs, and a plan is optimal if it has
minimum cost. The cost of a problem is the cost of its optimal solutions. When
action costs are all 1, a situation that is common in classical planning, plan cost
reduces to plan length, and the optimal plans are simply the shortest ones.

The computation of a classical plan can be cast as a path-finding problem in a
directed graph whose nodes are the states, and whose source and target nodes are
the initial state s0 and the goal states SG. Algorithms for solving such problems
are polynomial in the number of nodes (states), which is exponential in the number
of problem variables (see below). The use of heuristics for guiding the search for
plans in large graphs is aimed at improving such worst case behavior.

The model underlying classical planning does not account for either uncertainty
or sensing and thus gives rise to plans that represent open-loop controllers where
observations play no role. Other planning models in AI take these aspects into
account and give rise to different types of controllers.

Conformant planning is planning in the presence of uncertainty in the initial
situation and action effects. In the resulting model, the initial state s0 is replaced
by a set S0 of possible initial states, and the deterministic transition function f(a, s)
that maps the state s into the unique successor state s′ = f(a, s), is replaced by
a non-deterministic transition function F (a, s) that maps s into a set of possible
successor states s′ ∈ F (a, s). A solution to such model, called a conformant plan,
is an action sequence that achieves the goal with certainty for any possible initial
state and any possible state transition [Goldman and Boddy 1996]. The search for
conformant plans can also be cast as a path-finding problem but over a different,
exponentially larger graph whose nodes represent belief states. In this formulation,
a belief state b stands for the set of states deemed possible, the initial belief state
is b0 = S0, and actions a, whether deterministic or not, map a belief state b into
a unique successor belief state ba, where s′ ∈ ba if there is a state s in b such that
s′ ∈ F (a, s) [Bonet and Geffner 2000].

Planning with sensing, often called contingent planning in AI, refers to planning
in the face of both uncertainty and feedback. The model extends the one for con-
formant planning with a characterization of sensing. A sensor model expresses the
relation between the observations and the true but possibly hidden states, and can
be codified through a set o ∈ O of observation tokens and a function o(s) that maps
states s into observation tokens. An environment is fully observable if different
states give rise to different observations, i.e., o(s) 6= o(s′) if s 6= s′, and partially
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observable otherwise. While the model for planning with sensing is a slight varia-
tion of the model for conformant planning, the resulting solution or plan forms are
quite different as observations can and must be taken into account in the selection of
actions. Indeed, solution to planning with sensing problems can be expressed equiv-
alently as either trees [Weld, Anderson, and Smith 1998], policies mapping beliefs
into actions [Bonet and Geffner 2000], or finite-state controllers [Bonet, Palacios,
and Geffner 2009]. A finite-state controller is an automata defined by a collection of
tuples of the form 〈q, o, a, q′〉 that prescribe to do action a and move to the controller
state q′ after getting the observation o in the controller state q.

The probabilistic versions of these models are also used in planning. The models
that result when the actions have stochastic effects and the states are fully ob-
servable are the familiar Markov Decision Processes (MDPs) used in Operations
Research and Control Theory [Bertsekas 1995], while the models that result when
action and sensors are stochastic, are the Partial Observable MDPs (POMDPs)
[Kaelbling, Littman, and Cassandra 1998].

2.2 Planning Languages

A domain-independent planner is a general solver over a class of models: classical
planners are solvers over the class of basic state models where actions are determin-
istic and the initial state is fully known, conformant planners are solvers over the
class of models where actions are non-deterministic and the initial state is partially
known, and so on. In all cases, the corresponding state model that characterizes
a given planning problem is not given explicitly but in a compact form, with the
states associated with the values of a given set of variables.

One of the most common languages for representing classical problems is Strips,
a planning language that can be traced back to the early 70’s [Fikes and Nilsson
1971]. A planning problem in Strips is a tuple P = 〈F,O, I, G〉 where

• F stands for the set of relevant variables or fluents,

• O stands for the set of relevant operators or actions,

• I ⊆ F stands for the initial situation, and

• G ⊆ F stands for the goal situation.

In Strips, the actions o ∈ O are represented by three sets of atoms from F called
the Add, Delete, and Precondition lists, denoted as Add(o), Del(o), Pre(o). The
first, describes the atoms that the action o makes true, the second, the atoms that
o makes false, and the third, the atoms that must be true in order for the action
to be applicable. A Strips problem P = 〈F,O, I, G〉 encodes in compact form the
state model S(P ) where

• the states s ∈ S are the possible collections of atoms from F ,

• the initial state s0 is I,
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• the goal states s are those for which G ⊆ s,

• the actions a in A(s) are the ones in O with Prec(a) ⊆ s,

• the state transition function is f(a, s) = (s \Del(a)) ∪Add(a), and

• the action costs c(a) are equal to 1 by default.

The states in S(P ) represent the possible valuations over the boolean variables
in F . Thus, if the set of variables F has cardinality |F | = n, the number of states
in S(P ) is 2n. A state s represents the valuation where the variables appearing in
s are taken to be true, while the variables not appearing in s are false.

As an example, a planning domain that involves three locations l1, l2, and l3, and
three tasks t1, t2, and t3, where ti can be performed only at li, can be modeled with
a set F of fluents at(li) and done(ti), and a set O of actions go(li, lj) and do(ti),
i, j = 1, . . . , 3, with precondition, add, and delete lists

Pre(a) = {at(li)} , Add(a) = {at(lj)} , Del(a) = {at(li)}

for a = go(li, lj), and

Pre(a) = {at(li)} , Add(a) = {done(ti)} , Del(a) = {}

for a = do(ti). The problem of doing tasks t1 and t2 starting at location l3 can then
be modeled by the tuple P = 〈F, I, O, G〉 where

I = {at(l3)} and G = {done(t1), done(t2)} .

A solution to P is an applicable action sequence that maps the state s0 = I into a
state where the goals in G are all true. In this case one such plan is the sequence

π = {go(l3, l1), do(t1), go(l1, l2), do(t2)} .

The number of states in the problem is 26 as there are 6 boolean variables. Still,
it can be shown that many of these states are not reachable from the initial state.
Indeed, the atoms at(li) for i = 1, 2, 3 are mutually exclusive and exhaustive, mean-
ing that every state reachable from s0 makes one and only one of these atoms
true. These boolean variables encode indeed the possible values of the multi-valued
variable that represents the agent location.

Strips is a planning language based on variables that are boolean, yet planning
languages featuring primitive multi-valued variables and richer syntactic constructs
are commonly used for describing both classical and non-classical planning models
[McDermott 1998; Younes, Littman, Weissman, and Asmuth 2005].

2.3 Planning Algorithms

We have presented some of the models used in domain-independent planning, and
one of the languages used for describing them in compact form. We focus now on
the algorithms developed for solving them.
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GPS, the first AI planner introduced by Newell, Shaw, and Simon, used a tech-
nique called means-ends analysis where differences between the current state and
the goal situation were identified and mapped into operators that could decrease
those differences [Newell and Simon 1963]. Since then, the idea of means-ends anal-
ysis has been refined and extended in many ways, seeking planning algorithms that
are sound (only produce plans), complete (produce a plan if one exists), and effec-
tive (scale up to large problems). By the early 90’s, the state-of-the-art method was
UCPOP [Penberthy and Weld 1992], an elegant algorithm based on partial-order
causal link planning [Sacerdoti 1975; Tate 1977; McAllester and Rosenblitt 1991], a
planning method that is sound and complete, but which doesn’t scale up too well.

The situation in planning changed drastically in the middle 90’s with the in-
troduction of Graphplan [Blum and Furst 1995], a planning algorithm based on
the Strips representation but which otherwise had little in common with previous
approaches, and scaled up better. Graphplan works iteratively in two phases. In
the first phase, Graphplan builds a plan graph in polynomial time, made up of a
sequence of layers F0, A0, . . . , Fn−1, An−1, Fn where Fi and Ai denote sets of fluents
and actions respectively. F0 is the set of fluents true in the initial situation and
n is a planning horizon, initially the index of the first layer Fi where all the goals
appear. In this construction, certain pairs of actions and certain pairs of fluents are
marked as mutually exclusive or mutex. The meaning of these layers and mutexes
is roughly the following: if a fluent p is not in layer Fi, then no plan can achieve
p in i steps or less, while if the pair p and q is in Fi but marked as mutex, then
no plan can achieve p and q jointly in i steps or less. Graphplan makes then an
attempt to extract a plan from the graph, a computation that is exponential in the
worst case. If the plan extraction fails, the planning horizon n is increased by 1, the
plan graph is extended one level, and the plan extraction procedure is tried again.
Blum and Furst showed that the planning algorithm is sound, complete, and opti-
mal, meaning that the plan obtained minimizes the number of time steps provided
that certain sets of actions can be done in parallel. More importantly, they showed
experimentally that this planning approach scaled up much better than previous
approaches.

Due to the new ideas and the emphasis on the empirical evaluation of planning
algorithms, Graphplan had a great influence in planning research that has seen two
new approaches in recent years that scale up better than Graphplan using methods
that are not specific to planning.

In the SAT approach to planning [Kautz and Selman 1996], Strips problems are
converted into satisfiability problems expressed as a set of clauses (a formula in
Conjunctive Normal Form) that are fed into state-of-the-art SAT solvers. If for
some horizon n, the clauses are satisfiable, a parallel plan that solves the problem
can be read from the model returned by the solver. If not, like in Graphplan, the
plan horizon is increased by 1 and the process is repeated until a plan is found. The
approach works well when the required horizon is not large and optimal parallel
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plans are sought.
In the heuristic search approach [McDermott 1996; Bonet, Loerincs, and Geffner

1997], the planning problem is solved by heuristic search algorithms with heuristic
evaluation functions extracted automatically from the problem encoding. In forward
or progression-based planning, the state space S(P ) for a problem P is searched for
a path connecting the initial state with a goal state. In backward or regression-based
planning, plans are searched backwards from the goal. Heuristic search planners
have been shown to scale up to very large problems when solutions are not required
to be optimal.

The heuristic search approach has actually not only delivered performance but
also an explanation for why Graphplan scaled up better than its predecessors. While
not described in this form, Graphplan is a heuristic search planner using a heuristic
evaluation function encoded implicitly in the planning graph, and a well known ad-
missible search algorithm [Bonet and Geffner 2001]. The difference in performance
between recent and older planning algorithms is thus the result of inference: while
planners searched for plans blindly until Graphplan, they all search with automati-
cally derived heuristics now, or with unit resolution and clause learning when based
on the SAT formulation. Domain-independent solvers whose search is not informed
by inference of some sort, do not scale up, as there are too many alternatives to
choose from, with a few of them leading to the goal.

3 Domain-Independent Planning Heuristics

The main novelty in state-of-the-art planners is the use of automatically derived
heuristics to guide the search for plans. In Heuristics, Pearl showed how heuristics
such as the sum of Manhattan distances for the 15-puzzle, the Euclidian distance
for Road Map finding, and the Minimum Spanning Tree for the Travelling Sale-
man Problem, can all be understood as optimal cost functions of suitable problem
relaxations. Moreover, for the 15-puzzle, Pearl explicitly considered relaxations ob-
tained mechanically from a Strips representation, showing that both the number
of misplaced tiles and the sum of Manhattan distances heuristics are optimal cost
functions of relaxations where some preconditions of the actions for moving tiles are
dropped.

Pearl focused then on the conditions under which a problem relaxation is ‘sim-
ple enough’ so that its optimal cost can be computed in polynomial time. This
research problem attracted his attention at the time, and explains his interest on
the graphical structures underlying various types of problems, including problems of
combinatorial optimization, constraint satisfaction, and probabilistic inference. One
kind of structure that appeared to result in ‘easy’ problems in all these contexts was
trees. Pearl and his students showed indeed that inference on probabilistic Bayesian
Trees and Constraint Satisfaction Trees was polynomial [Pearl 1982; Dechter and
Pearl 1985], even if the general problems are NP-hard (see also [Mackworth and
Freuder 1985]). The notion of graphical structures underlying inference problems
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and the conditions under which they render inference polynomial have been gener-
alized since then in the notion of treewidth, a parameter that measures how tree-like
is a graph structure [Pearl 1988; Dechter 2003].

Research on the automatic derivation of heuristics in planning builds on Pearl’s
intuition but takes a different path. The relaxation P+ that underlies most current
heuristics in domain-independent planning is obtained from a Strips problem P

by dropping, not the preconditions, but the delete lists. This relaxation is quite
informative but is not ‘easy’; indeed finding an optimal solution to a delete-free
problem P+ is not easier from a complexity point of view than finding an optimal
solution to the original problem P . On the other hand, finding one solution to P+,
not necessarily optimal, can be done easily, in low polynomial time. The result
is that heuristics obtained from P+ are informative but not admissible (they may
overestimate the true cost), and hence, they can be used effectively for finding plans
but not for finding optimal plans.

If P (s) refers to a planning problem that is like P = 〈F, I, O, G〉 but with I = s,
and π(s) is the solution found for the delete-relaxation P+(s), the heuristic h(s)
that estimates the cost of the problem P (s) is defined as

h(s) = Cost(π(s)) =
∑

a∈π(s)

cost(a) .

The plans π(s) for the relaxation P+(s) are called relaxed plans, and there have
been many proposals for defining and computing them. We explain below one such
method that corresponds to running Graphplan on the delete-relaxation P+(s)
[Hoffmann and Nebel 2001]. In delete-free problems, Graphplan runs in polynomial
time and its plan graph construction is simplified as there are no mutex relations
to keep track of.

The layers F0, A0, F1, . . . , Fn−1, An−1, Fn in the plan graph for P+(s) are
computed starting with F0 = s, by placing in Ai, i = 1, . . . , n − 1, all the actions
a in P whose preconditions Pre(a) are in Fi, and placing in Fi+1, the add effects
of those actions along with the fluents in Fi. This construction is terminated when
the goals G are all in Fn, or when Fn = Fn+1. Then if G 6⊆ Fn, h(s) = ∞, as
it can be shown then that the relaxed problem P+(s) and the original problem
P (s) have no solution. Otherwise, a (relaxed) parallel plan π(s) for P+(s) can be
obtained backwards from the layer Fn by collecting the actions that add the goals,
and recursively, the actions that add the preconditions of those actions that are not
true in the state s.

More precisely, for Gn = G and i from n − 1 to 0, Bi is set to a minimal
collection of actions in Ai that add all the atoms in Gi+1 \ Fi, and Gi is set to
Pre(Bi)∪(Gi+1∩Fi) where Pre(Bi) is the collection of fluents that are preconditions
of actions in Bi. It can be shown then that π(s) = B0, . . . , Bn−1 is a parallel plan
for the relaxation P+(s); the plan being parallel because the actions in each set Bi

are assumed to be done in parallel. The heuristic h(s) is then just Cost(π(s)). This
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Figure 2. A simple planning problem involving three blocks with initial and goal situations

I and G as shown. The actions allow to move a clear block on top of another clear block

or to the table. A plan for the problem is a path that connects I with G in the directed

graph partially shown. In this example, the plan can be found greedily by taking in each

state s, starting with s = I, the action that results in a state s′ that is closer to the goal

according to the heuristic. The heuristic values (shown) are derived automatically from

the problem as described in the text.

is indeed the heuristic introduced in the FF planner [Hoffmann and Nebel 2001],
which is suitable when action costs are uniform. For non-uniform action costs, other
heuristics are more convenient [Keyder and Geffner 2008].

4 Meaning of Domain-Independent Heuristics

In order to illustrate the meaning and derivation of domain-independent heuristics,
let us consider the example shown in Fig. 2, where blocks a, b, and c initially
arranged so that a is on b, and b and c are on the table, must be rearranged so
that b is on c, and c is on a. The actions allow to move a clear block (a block with
no block on top) on top of another clear block or to the table. The problem can
be expressed as a Strips problem P = 〈F, I, O, G〉 with a set of atoms F given by
on(x, y), ontable(x), and clear(x), where x and y range over the block labels a, b,
and c. In the heuristic search approach to planning, the solution to P becomes a
path-finding problem in the directed graph associated with the state model S(P ),
where the nodes stand for the states in S(P ), and the actions a ∈ O are mapped
into edges connecting a state s with a state s′ when a is applicable in s and maps
s into s′.

The Blocks World is simple for people, but until recently, not so simple for
domain-independent planners. Indeed, the size of the graph to search is exponential
in the number of blocks n, with n! possible towers of n blocks, and additional
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combinations of shorter towers.
Figure 2 shows the search that results from a planner using the heuristic described

above, whose value h(s) for each of the states in the graph is shown. All action
costs are assumed to be 1. With the heuristic shown, the solution to the problem
can be found with no search at all by just selecting in each state s the action that
leads to the state s′ that is closest to the goal (lowest heuristic value). In the initial
state, this action is the one that places block a on the table, in the following state,
the action that places c on a, and so on.

In order to understand the numbers shown in the figure, let us see how the value
h(s) = 3 for the initial state s is derived. The heuristic h(s) is |π(s)| where π(s)
is the plan found for the relaxation P+(s). The relaxed plan π(s) is obtained by
constructing first the layered graph F0, A0, . . . , Fn−1, An−1, Fn, where n > 0 as
none of the goals on(b, c) and on(c, a) are in F0 = s. The actions in A0 are the
actions applicable given the atoms in F0, i.e., the actions a with Pre(a) ⊆ F0. This
set includes the actions of moving c to a, a to c, and a to the table, but does not
include actions that move b as the precondition clear(b) is not part of F0. The set
F1 extends F0 with all the atoms added by the actions in A0, and includes on(c, a),
on(a, c), ontable(a), and clear(b), but not the goal on(b, c). Yet with clear(b) and
clear(c) in F1, the action for moving b to c appears in layer A1, and therefore, the
other goal atom on(b, c) appears in F2. By collecting the actions that first add the
goal atoms on(c, a) and on(b, c), and recursively, the preconditions of those actions
that are not in s, a relaxed plan π(s) with 3 actions is obtained so that h(s) = 3.
There are several choices for the actions in π(s) that result from the way ties in the
plan extraction procedure are broken. One possible relaxed plan involves moving
a to the table and c to a in the first step, and b to c in the second step. Another
involves moving a to c and c to a first, and then b to c.

It is important to notice that fluent layers such as F1 in the plan graph do not
represent any ‘real’ states in the original problem P as they include atoms pairs
like on(a, c) and on(c, a) that cannot be achieved jointly in any state s′ reachable
from the initial state. The layer F1 is instead an abstraction that approximates the
set of all states reachable in one step from the initial state by taking their union.
This approximation implies that finding an atom p in a layer Fn with n > 1 is no
guarantee that there is a real plan for p in P (s) that achieves p in n time steps,
rather than one such parallel plan exists in the relaxation. Similarly, the relaxed
plans π(s) obtained above are quite ‘meaningless’; they move a to the table or to c

at the same time that they move c to a. Yet, these ‘meaningless’ relaxed plans π(s)
yield the heuristic values h(s) that provide the search with a very meaningful and
effective sense of direction.

Let us finally point out that the computation of the domain-independent heuristic
h(s) results in valuable information that goes beyond the numbers h(s). Indeed,
from the computation of the heuristic value h(s), it is possible to determine the
actions applicable in the state s that are most relevant to the goal, and then focus
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on the evaluation of the states that result from those actions only. This type of
action pruning has been shown to be quite effective [Hoffmann and Nebel 2001],
and in slightly different form is part of state-of-the-art planners [Richter, Helmert,
and Westphal 2008].

5 Other Developments in Planning

Domain-independent planning is concerned with non-classical models also where
information about the initial situation is incomplete, actions may have non-de-
terministic effects, and states may be fully or partially observable. A number of
native solvers for such models, that include Markov Decision Processes (MDPs) and
Partially Observable MDPs have been developed, and progress in the area has been
considerable too. Moreover, many of these solvers are also based on heuristic search
methods (see the article by Bonet and Hansen in this volume). I will not review
this literature here but focus instead on two ways in which the results obtained for
classical planning are relevant to such richer settings too.

First, it’s often possible to plan under uncertainty without having to model the
uncertainty explicitly. This is well known by control engineers that normally design
closed-loop controllers for stochastic systems ignoring the ‘noise’. Indeed, the error
in the model is compensated by the feedback loop. In planning, where non-linear
models are considered, the same simplification works too. For instance, in a Blocks
World where the action of moving a block may fail, an effective closed-loop policy
can be obtained by replanning from the current state when things didn’t progress
as predicted by the simplified model. Indeed, the planner that did best in the
first probabilistic planning competition [Younes, Littman, Weissman, and Asmuth
2005], was not an MDP planner, but a classical replanner of this type. Of course,
this approach is not suitable when it may be hard or impossible to recover from
failures, or when the system state is not fully observable. In everyday planning,
however, such cases may be the exception.

Second, it has been recently shown that it’s often possible to efficiently trans-
form problems featuring uncertainty and sensing into classical planning problems
that do not. For example, problems P involving uncertainty in the initial situa-
tion and no sensing, namely conformant planning problems, can be compiled into
classical problems K(P ) by adding new actions and fluents that express condition-
als [Palacios and Geffner 2007]. The translation from the conformant problem P

into the classical problem K(P ) is sound and complete, and provided that a width
parameter defined over P is bounded, it is polynomial too. The result is that the
conformant plans for P can be read from the plans for K(P ) that can be com-
puted using a classical planner. Moreover, this technique has been recently used for
deriving finite-state controllers that solve problems featuring both incomplete in-
formation and sensing [Bonet, Palacios, and Geffner 2009]. A finite-state controller
is an automata that given the current (controller) state and the current observation
selects an action and updates the controller state, and so on, until reaching the



Heuristics, Planning and Cognition

goal. Figure 3 shows one such problem (left) and the resulting controller (right).
The problem, motivated by the work on deictic representations in the selection of
actions [Chapman 1989; Ballard, Hayhoe, Pook, and Rao 1997], is about placing a
visual marker on top of a green block in a blocks-world scene where the location of
the green blocks is not known. The visual marker, initially at the lower left corner
of the scene (shown as an eye), can be moved in the four directions, one cell at a
time. The observations are whether the cell beneath the marker is empty (‘C’), a
non-green block (‘B’), or a green block (‘G’), and whether it is on the table (‘T’)
or not (‘-’). The controller shown on the right has been derived by running a clas-
sical planner over a classical problem obtained by an automatic translation from
the original problem that involves both uncertainty and sensing. In the figure, the
controller states qi are shown in circles while the label o/a on an edge connecting
two states q to q′ means to do action a when observing o in q and then switching
to q′. In the classical planning problem obtained from the translation, the actions
are tuples (fq, fo, a, fq′) whose effects are those of the action a but conditional on
the fluents fq and fo representing the controller state q and observation o being
true. In such a case, the fluent fq′ representing the controller state q′ is made true
and fq is made false. The two appealing features of this formulation is that the
resulting classical plans encode very succint closed-loop controllers, and that these
controllers are quite general. Indeed, the controller shown in the figure not only
solves the problem for the configuration of blocks shown, but for any configuration
involving any number of blocks. The controller prescribes to move the ‘eye’ up until
there are no blocks, then to move it down until reaching the table and right, and
to repeat this process until a green block is found (‘G’). Likewise, the ‘eye’ must
move right when there are no blocks in a given spot (both ‘T’ and ‘C’ observed).
See [Bonet, Palacios, and Geffner 2009] for details.

6 Heuristics and Cognition

Heuristic evaluation functions are used also in other settings such as Chess play-
ing programs [Pearl 1983] and reinforcement learning [Sutton and Barto 1998].
The difference between evaluations functions in Chess, reinforcement learning, and
domain-independent planning mimic actually quite closely the relation among the
three approaches to action selection mentioned in the introduction: programming-
based, learning-based, and model-based. Indeed, the evaluation functions are pro-
grammed by hand in Chess, are learned by trial-and-error in reinforcement learning,
and are derived from a (relaxed) model in domain-independent planning.

Heuristic evaluation functions in reinforcement learning, called simply valuation
functions, are computed by stochastic sampling and dynamic programming updates.
This is a model-free method that has been shown to be effective in low-level tasks
that do not involve large state spaces, and which provides an accurate account of
learning in the brain [Schultz, Dayan, and Montague 1997].

Heuristic evaluation functions as used in domain-independent planning are com-
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Figure 3. Left: The visual marker shown as an ‘eye’ must be placed on a green block in

the blocks-world scene shown, where the locations of the green blocks are not known. The

visual marker can be moved in the four directions, one cell at a time. The observations

are whether the cell beneath the marker is empty (‘C’), a non-green block (‘B’), or a green

block (‘G’), and whether the marker is on the table (‘T’) or not (‘-’). Right: The controller

derived for this problem using a classical planner over a suitable automatic transformation.

The controller states qi are shown in circles while the label o/a on an edge connecting q to

q′ means to do a when observing o in q switching then to q′. The controller works not only

for the problem instance shown on the left, but for any instance resulting from changes in

the configuration or in the number of blocks.

puted by model-based methods where suitable relaxations are solved from scratch.
The technique has been shown to work over large problems involving hundred of
actions and fluents. Here I want to argue these methods also have features that
make them interesting from a cognitive point of view as a plausible basis for an ac-
count of ‘feelings’, ‘emotions’, or ‘appraisals’ in high-level human problem solving.
I focus on three of these features.

First, domain-independent heuristics are fast (low-polynomial time) and effective,
as the ‘fast and frugal’ heuristics advocated by Gigerenzer and others [Gigerenzer
and Todd 1999; Gigerenzer 2007], and yet, they are general too: they apply indeed
to all the problems that fit the (classical planning) model and to problems that can
be cast in that form (like the visual-marker problem above).

Second, the derivation of these heuristics sheds light on why appraisals may be
opaque from a cognitive point of view, and thus not conscious. This is because
the heuristic values are obtained from a relaxed model where the meaning of the
symbols is different than the meaning of the symbols in the ‘true’ model. For
example, the action of moving an object from one place to another, deletes the old
place in the true model but not in the delete-relaxation where an object can thus
appear in multiple places at the same time. Thus, if the agent selecting the actions
with the resulting heuristic does not have access to the relaxation, it won’t be able
to explain how the heuristic evaluations are produced nor what they stand for.
The importance of the unconscious in everyday cognition is a topic that has been
receiving increased attention in recent years, with conscious, deliberate reasoning,
appearing to rely heavily on unconscious processing and representing just the tip
of the ‘cognitive iceberg’ [Wilson 2002; Hassin, Uleman, and Bargh 2005; Evans
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2008]. While this is evident in vision and natural language processing, where it is
clear that one does not have access to how one ‘sees’ or ‘understands’, this is likely
to be true in most cognitive tasks, including apparently simple problems such as
the Blocks World where our ability to find reasons for the actions selected, does
not explain how such actions are selected in the first place. In this sense, the focus
of cognitive psychology on puzzles such as the Tower of Hanoi may be misplaced:
simple problems, such as the Blocks World, are not simple for domain-independent
solvers, and there is no question that people are capable of solving domains that
they have never seen where the combinatorics would defy a naive, blind solver.

Third, the heuristics provide the agent with a sense of direction or ‘gut feelings’
that guide the action selection in the presence of many alternatives, while avoiding
an infinite regress in the decision process. Indeed, emotions long held to interfere
with the decision process and rationality, are now widely perceived as a requisite
in contexts where it is not possible to consider all alternatives. Emotions and gut
feelings are thus perceived as the ‘invisible hand’ that successfully guides us out of
these mental labyrinths [Ketelaar and Todd 2001; Evans 2002].1 The ‘rationality of
the emotions’ have been defended on theoretical grounds by philosophers [De Sousa
1990; Elster 1999], and on empirical grounds by neuroscientists that have studied
the impairments in the decision process that result from lesions in the frontal lobes
[Damasio 1995]. The link between emotions and evaluation functions, point to their
computational role as well.

While emotions are currently thought as providing the appraisals that are nec-
essary for navigating in a complex world, there are actually very few accounts of
how such appraisals may be computed. Reinforcement learning methods provide one
such account that works well in low level tasks without requiring a model. Heuris-
tic planning methods provide another account that works well in high-level tasks
where the model is known. Moreover, as discussed above, heuristic planning meth-
ods do not only provide an account of the appraisals, but also of the actions that are
worth evaluating. These are the actions a in the state s that are deemed relevant
to the goal in the computation of the heuristic h(s); the so-called helpful actions
[Hoffmann and Nebel 2001]. This form of action pruning may account for a key
difference between programs and humans in games such as Chess: while the former
consider all possible moves and responses (up to a certain depth), the latter focus on
the analysis and evaluation of a few moves and countermoves. Domain-independent
heuristics can account in principle for both the focus and the evaluation, the latter
in the value of the heuristic function h(s), the former in its structure.

1Some philosophers and cognitive scientists refer to this combinatorial problem as the ‘frame

problem’ in AI. This terminology, however, is not accurate. The frame problem in AI [McCarthy

and Hayes 1969] refers to the problem that arises in logical accounts of actions and change where

the description of the action effects does not suffice to capture what does not change. E.g., the

number of chairs in the room does not change if the bell rings. The frame problem is the problem

of capturing what does not change from a concise logical description of what changes [Ford and

Pylyshyn 1996].
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7 AI and Cognitive Science: Past and Future

Pearl’s ideas on the mechanical discovery of heuristics has received renewed atten-
tion in the area of domain-independent planning where heuristic evaluation func-
tions, derived automatically from the problem encoding, are used to guide the search
for plans in large spaces. Heuristic search planners are powerful domain-independent
solvers that have been empirically tested over many large domains involving hundred
of actions and variables.

The developments in planning parallel those in other areas of AI and bear on the
relevance of Artificial Intelligence to the understanding of the human mind. AI and
Cognitive Science were twin disciplines until the 80’s, with AI looking to the human
mind for inspiration, and Cognitive Science looking to computation as a language
for modeling. The relationship between AI and Cognitive Science has changed,
however, and the two disciplines do not appear to be that close now. Below, I go
over some of the relevant changes that explain this divorce, and explain why, in spite
to them, AI remains and will likely remain critically relevant for understanding the
human mind, a premise that underlies and motivates the work of Judea Pearl and
others AI scientists.

A lot of work in AI until the 80’s was about writing programs capable of displaying
intelligence over ill-defined problems, either by appealing to introspection or by
interviewing an expert. Many good ideas came out from this work, yet few have
had a lasting scientific value. The methodological problem with the ‘knowledge-
based’ approach in AI was that the resulting programs were not robust and they
always appeared to be missing critical knowledge; either declarative (e.g., that men
don’t get pregnant), procedural (e.g., which rule or action to apply next), or both.
This situation led to an impasse in the 80’s, and to many debates and criticisms,
like that ‘good old fashioned AI’ is ‘rule application’ but human intelligence is not
[Haugeland 1993], that representation is not needed for intelligent behavior and gets
in the way [Brooks 1991], that subsymbolic neural networks and genetic algorithms
are the way to go [Rumelhart and McClelland 1986; Holland 1992], etc.

In part due to the perceived limitations of the knowledge-based approach and
the criticisms, and in part due to its own evolution, mainstream AI has changed
substantially since the 80’s. One of the key methodological changes is that many
researchers have moved from the early paradigm of writing programs for ill-defined
problems to writing solvers for well-defined mathematical models. These models
include Constraint Satisfaction Problems, Strips Planning, Bayesian Networks and
Partially Observable Markov Decision Processes, among others. Solvers are pro-
grams that take a compact description of a particular model instance (a planning
problem, a CSP instance, and so on) and automatically compute its solution. Un-
like the early AI programs, solvers are general as they must deal with any problem
that fits the model (any instance). Moreover, some of these models, like POMDPs,
are extremely expressive. The challenge in this research agenda is mainly com-
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putational: how to make these domain-independent solvers scale up to large and
interesting problems given that all these models are intractable in the worst case.
Work in these areas has uncovered techniques that accomplish this by automatically
recognizing and exploiting the structure of the problems at hand. In planning, these
techniques have to do with the automatic derivation and use of heuristic evaluation
functions; in SAT and CSPs, with constraint propagation and learning, while in
CSPs and Bayesian Networks, with the use of the underlying graphical structure.

The relevance of the early work in AI to Cognitive Science was based on intuition:
programs provided a way for specifying intuitions precisely and for trying them
out. The more recent work on domain-independent solvers is more technical and
experimental, and is focused not on reproducing intuitions but on scalability. This
may give the impression, confirmed by the current literature, that recent work in
AI is less relevant to Cognitive Science than work in the past. This impression,
however, may prove wrong on at least two grounds. First, intuition is not what
it used to be, and it is now regarded as the tip of an iceberg whose bulk is made
of massive amounts of shallow, fast, but unconscious inference mechanisms that
cannot be rendered explicit in the form of rules [Wilson 2002; Hassin, Uleman, and
Bargh 2005; Gigerenzer 2007]. Second, whatever these mechanisms are, they appear
to work pretty well and to scale up. This is no small feat, given that most methods,
whether intuitive or not, do not. Indeed, if the techniques that really scale up are not
that many, a plausible conjecture at this point, it may well be the case that the twin
goals of accounting reliably for the intuitions and of scaling up have a large overlap.
By focusing then on the study of meaningful models and the computational methods
for dealing with them effectively, AI may prove its relevance to human cognition
in ways that may go well beyond the rules, cognitive architectures, and knowledge
structures of the 80’s. Human Cognition, indeed, still provides the inspiration and
motivation for a lot of research in AI. The use of Bayesian Networks in Development
Psychology for understanding how children acquire and use causal relations [Gopnik,
Glymour, Sobel, Schulz, , Kushnir, and Danks 2004], and the use of Reinforcement
Learning algorithms in Neuroscience for interpreting the activity of dopamine cells
in the brain [Schultz, Dayan, and Montague 1997], are two examples of general AI
techniques that have made it recently into Cognitive Science. As AI focuses on
models and solvers able to scale up, more techniques are likely to follow. One such
candidate is the automatic derivation of heuristic functions as used in planning,
which like the research on Bayesian Networks, owes a lot to the seminal work of
Judea Pearl.
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