
In Wiley Interdisciplinary Reviews: Cognitive Science (4) 4, 2013

1

Computational Models of Planning
(Overview Article)

Hector Geffner
ICREA & Universitat Pompeu Fabra

Roc Boronat 138, 55.213
08018 Barcelona, SPAIN

Abstract

The selection of the action to do next is one of the central problems faced by
autonomous agents. Natural and artificial systems address this problem in various
ways: action responses can be hardwired, they can be learned, or they can be computed
from a model of the situation, the actions, and the goals. Planning is the model-
based approach to action selection and a fundamental ingredient of intelligent behavior
in both humans and machines. Planning, however, is computationally hard as the
consideration of all possible courses of action is not computationally feasible. The
problem has been addressed by research in Artificial Intelligence that in recent years has
uncovered simple but powerful computational principles that make planning feasible.
The principles take the form of domain-independent methods for computing heuristics
or appraisals that enable the effective generation of goal-directed behavior even over
huge spaces. In this paper, we look at several planning models, at methods that have
been shown to scale up to large problems, and at what these methods may suggest
about the human mind.

1 Introduction

Planning is one of the key aspects of intelligent behavior, and one of the first to be studied in
the field of Artificial Intelligence (AI). The first AI planner and one of the first AI programs
was the General Problem Solver (GPS) developed by Newell and Simon in the late 50’s
[80, 81]. Since then, planning has remained a central topic in AI while changing in significant
ways: on the one hand, it has become more rigorous, with a variety of planning models
defined and studied; on the other, it has become more empirical, with planning algorithms
evaluated experimentally and a strong emphasis placed on scalability: effective goal-oriented
behavior that is not limited by the number of actions and variables in the problem.

Planning can be understood as representing one of the three main approaches for selecting
the action to do next ; a problem that is central in the design of autonomous systems. In
the hardwired approach, action responses are hardwired by nature, or more commonly in AI
systems, by a programmer. For a robot moving in an office environment, for example, the
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program may say to back up when too close to a wall, to search for a door if the robot has to
move to another room, and so on [25, 71]. The problem with this approach, common to many
other AI systems, is that since it is difficult to anticipate all possible situations and the best
way to handle them, the resulting systems tend to be brittle. In the learning-based approach,
on the other hand, action responses are not hardwired but are learned by trial and error as in
reinforcement learning [98], or by generalization from examples as in supervised learning [78,
89]. Finally, in the model-based approach, action responses are computed from a model of the
situation, the actions, the sensors, and goals [89, 39, 37]. The distinction that the philosopher
Daniel Dennett makes between ‘Darwinian’, ‘Skinnerian’, and ‘Popperian’ creatures [32],
mirrors quite closely the distinction between hardwired agents, agents that learn, and agents
that use models respectively. The approaches, however, are not incompatible, and indeed,
agents that learn models rather than behavioral responses fit also in the latter class, as they
must then use the models learned for selecting the action to do next.

Planning, usually associated with “thinking before acting”, is best conceived as the
model-based approach to action selection. It is a fundamental ingredient of intelligent be-
havior in both humans and machines, yet it is computationally hard. Indeed, even in the
most simple planning model where the state of the world is fully known and actions have
deterministic effects, the number of possible world states is exponential in the number of
state variables, and the number of possible plans is exponential in the length of the plans.1

The situation facing an artificial agent that plans even in the simplest setting, has a key
element that is common with humans making plans: neither one can afford to consider
all possible courses of action as this is not computationally feasible. This computational
challenge has been used as evidence for contesting the possibility of general planning and
reasoning abilities in humans or machines [100]. The complexity of planning, however, just
implies that no planner can efficiently solve every problem from every domain, not that a
planner cannot solve an infinite collection of problems from old and new domains, and hence
be useful to an acting agent. This is indeed the way modern AI planners are empirically
evaluated and ranked in AI planning competitions, where they are tried on domains that
the planners’ authors have never seen [29]. Thus, far from representing an insurmountable
obstacle, the twin requirements of generality and scalability have been addressed head on
in AI planning research, and this has led to simple but powerful computational principles
that make domain-independent planning feasible. The principles take the form of heuristics
or appraisals that are computed automatically for the problem at hand from suitable relax-
ations (simplifications) of the problem. The heuristics derived in this way tailor the general
solver to the specific problem, and enable the generation of goal-directed behavior even over
huge spaces. In this paper, we look at these methods and what they may reveal about the
human mind, turning the requirements of generality and scalability from an impossibility
into a critical source of insight.

From a cognitive perspective, one lesson to draw is that if one of the primary roles of
feelings and emotions is to act as rough guides in the generation of behavior in complex
physical and social worlds where the consideration of all possible courses of action is not

1More precisely, in the language of computer science, planning is said to be NP-hard, meaning that
there cannot be a general sound and complete planning algorithm that runs in polynomial time, unless
the fundamental conjecture in computer science that NP-hard problems do not admit polynomial solutions,
widely believed to be true, turns out to be false [26].

2



2

computationally feasible, much is much to be gained by looking at suitable abstractions of
the problem that present the same computational challenges in crisp form. More specifically,
we will argue that the domain-independent methods for deriving heuristic functions that
have been developed for making planning feasible provide a different angle from which to
look at the computation and role of emotional appraisals in humans [36].2

The paper is organized as follows. We consider the most basic planning model first,
the computational challenges that it presents, and the domain-independent methods that
have been developed for addressing this challenge. We then look at what these domain-
independent heuristics suggest about the generation, nature, and role of unconscious ap-
praisals, and move on to alternative planning methods and richer planning models. We con-
clude by discussing some open challenges in planning research and summarizing the main
lessons.

2 Basic Model: Classical Planning

The most basic model in planning is concerned with the selection of actions for achieving
goals when the initial situation is fully known and actions have deterministic effects. The
model underlying this form of planning, called classical planning, can be described formally
in terms of a state space featuring

• a finite and discrete set of states S,

• a known initial state s0 ∈ S,

• a set SG ⊆ S of goal states,

• a set of actions A(s) ⊆ A applicable in each state s ∈ S,

• a deterministic state transition function f(a, s) for a ∈ A(s) and s ∈ S, so that f(a, s)
denotes the state that results from doing action a in state s, and

• positive action costs c(a, s) that may depend on the action a and the state s.

A solution or plan for this model is a sequence of actions a0, . . . , an that generates a state
sequence s0, s1, . . . , sn+1 such that each action ai is applicable in the state si and results in
the state si+1 = f(ai, si), the last of which is a goal state; i.e., si+1 = f(ai, si) for ai ∈ A(si),
i = 0, . . . , n, and sn+1 ∈ SG. The cost of a plan is the sum of the action costs c(ai, si), and
a plan is optimal if it has minimum cost. The cost of a problem is the cost of its optimal
solutions. When action costs are all one, plan cost reduces to plan length, and the optimal
plans are simply the shortest ones.

As an illustration, the problem of rearranging a set of block towers into a different set
of towers can be naturally formulated as a model of this type where the state represents
the possible block configurations. Similarly, delivering a set of goods to clients, solving a

2The relationship between planning and emotion has been considered by other authors that aim to
import elements from the theory of emotions into AI planners [43, 44]. Our focus here goes in the opposite
direction, on what modern computational models of planning can tell us about the generation, nature, and
role of emotional appraisals.
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puzzle such as Rubik’s Cube, or playing solitaire can be all expressed as classical planning
problems.

The model underlying classical planning does not account for either uncertainty or sens-
ing, and thus gives rise to plans that represent open-loop controllers where observations play
no role. Planning models that take these aspects into account give rise to different types of
controllers and will be considered later.

3 State Variables and Factored Representations

The state models required for planning are not represented explicitly in general because they
are often too large. The planning agent is assumed to have instead a compact and implicit
representation of the state model given in terms of a set of state variables. The states are
the possible combination of values over these variables, and the actions are defined in terms
of pre and postconditions expressed over the state variables as well.

One of the most common languages for representing classical planning problems is also
one of the oldest, Strips [35], a planning language that can be traced back to the late 60’s.
A planning problem in Strips is a tuple P = 〈F,O, I,G〉 where

• F represents a set of boolean variables,

• O represents a set of actions,

• I represents the initial situation, and

• G represents the goal.

Both the initial situation I and the goal G are expressed by a set of atoms over F . For
a boolean state variable p in F , there are two atoms p = true and p = false, abbreviated
using logical notation as p and ¬p, where the symbol ‘¬’ stands for negation. A state in a
Strips problem is a valuation of the state variables represented by the collection of atoms
that the state makes true. The initial situation I stands for the state that makes the atoms
in I true and all other atoms false, while the goal G stands for the collection of states that
make all the atoms in G true.

In Strips, the actions o ∈ O are represented by three sets of atoms over F called the
Add, Delete, and Precondition lists, denoted as Add(o), Del(o), Pre(o). The first describes
the atoms that the action o makes true, the second, the atoms that o makes false, and the
third, the atoms that must be true in order for the action to be applicable. A Strips problem
P = 〈F,O, I,G〉 encodes implicitly, in compact form, the classical state model S(P ) where

• the states s ∈ S are the possible collections of atoms over F ,

• the initial state s0 is I,

• the goal states s are those for which G ⊆ s,

• the actions a in A(s) are the ones in O with Prec(a) ⊆ s,

• the state transition function is f(a, s) = (s \ Del(a)) ∪ Add(a), i.e., the state s with
the atoms in Del(a) deleted and the atoms in Add(a) added, and

• the action costs c(a) are equal to one by default.
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Given that the Strips problem represents the state model S(P ), the plans for P are
defined as the plans for S(P ); namely, the action sequences that map the initial state s0 that
corresponds to I into a goal state where the goals G are true. Since the states in S(P ) are
represented as collections of atoms from F , the number of states in S(P ) is 2|F | where |F | is
the number of boolean variables F in P , usually called fluents.

The state representation that follows from a planning language such as Strips is domain-
independent. Thus, while a specialized solver for the Blocks World may represent the state
by a set of lists, each one representing a tower of blocks, in the state representation that
follows from Strips there will be just atoms, and the same will be true of any other domain.
As an illustration, a domain that involves three locations l1, l2, and l3, and three tasks t1,
t2, and t3, where ti can be performed only at location li, can be modeled with a set F of
fluents at(li) and done(ti), and a set O of actions go(li, lj) and do(ti), i, j = 1, . . . , 3, with
precondition, add, and delete lists

Pre(a) = {at(li)} , Add(a) = {at(lj)} , Del(a) = {at(li)}

for a = go(li, lj), and

Pre(a) = {at(li)} , Add(a) = {done(ti)} , Del(a) = {}

for a = do(ti). The problem of doing tasks t1 and t2 starting at location l3 can then be
modeled by the tuple P = 〈F, I, O,G〉 where

I = {at(l3)} and G = {done(t1), done(t2)} .

A solution to P is an applicable action sequence that maps the state s0 = I into a state
where the goals in G are all true. In this case one such plan is the sequence

π = {go(l3, l1), do(t1), go(l1, l2), do(t2)} .

The number of states in the problem is 26 as there are 6 boolean variables. Still, it can
be shown that many of these states are not reachable from the initial state. Indeed, the
atoms at(li) for i = 1, 2, 3 are mutually exclusive and collectively exhaustive, meaning that
every state reachable from s0 makes one and only one of these atoms true. These boolean
variables encode indeed the possible values of the multi-valued variable that represents the
agent location. Planning languages featuring non-boolean variables and richer syntactic
constructs than Strips are also common in planning [75, 6, 106].

4 Complexity

The problem of finding a plan for the problem P can be naturally cast as a path-finding
problem over an implicit directed graph G(P ) whose nodes stand for the states in the model
represented by P , and whose edges s→ s′ represent the presence of an action that maps the
state s into the state s′. Paths connecting the state s0, representing the initial situation of
P , to a state s where the goals of P are true, capture the plans that solve P . Algorithms for
computing such paths are well-known in computer science and include Dijkstra’s shortest-
path method that iteratively extends the set of nodes whose shortest path distance g(s) from
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Figure 1: The graph corresponding to a simple planning problem involving three blocks with initial
and goal situations I and G as shown. The actions allow moving a clear block on top of another
clear block or to the table. The size of the complete graph for this domain is exponential in the
number of blocks. A plan for the problem is shown by the path in red.

the source node is labeled as known, starting with the set that comprises only the source
node s0 [33, 30]. Then, in each iteration, Dijkstra’s algorithm selects among the nodes s
whose shortest path distance from s0 is not yet known, the one that minimizes the distance
g(s) = mins′ g(s′)+c(s′, s), where s′ ranges over the nodes that can be mapped into the state
s by an action with cost c(s′, s). The algorithm then labels the distance g(s) to the state s as
known, and iterates until no more states can be labeled in this manner. The algorithm can
be stopped when the node selected is a goal node. The measure g(s) for that node encodes
the cost of a cheapest plan that solves the planning problem P .

Algorithms for solving path-finding problems over directed graphs such as Dijkstra’s
algorithm run in time that is polynomial in the number of nodes in the graph. This, however,
is not good enough in planning where the number of nodes is exponential in the number of
problem variables F . Since in Strips the variables are boolean, the number of nodes in the
graph to search can be in the order of 2|F |. For example, if the problem involves 30 variables,
the number of nodes in the graph is 1, 073, 741, 824, and if it involves 100 variables, the
number of nodes is larger than 1030. If it takes 1 second to generate 107 nodes (a realistic
estimate given current technology), it would take more than 1023 seconds to generate all
nodes in the latter case. This is however almost one million times the estimated age of the
universe.3 Planning algorithms able to deal with tens of variables or more thus cannot be
based on exhaustive methods such as Dijkstra’s, and need to search for paths in graphs in a
more focused manner.

A more concrete illustration of the complexity inherent in the planning problem can

3The age of the universe is estimated at 13.7 × 109 years approximately. Generating 2100 nodes at 107

nodes a second would take in the order of 1015 years, as 2100/(107 ∗ 60 ∗ 60 ∗ 24 ∗ 365) ≈ 4 ∗ 1015.
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be obtained by considering the familiar Blocks World. Figure 1 shows an instance of the
problem where blocks A, B, and C, initially arranged so that A is on B, and B and C are on
the table, must be rearranged so that B is on C, and C is on A. The actions allow moving
a clear block (a block with no block on top) on top of another clear block or the table. The
problem can be expressed as a Strips problem P = 〈F, I, O,G〉 with a set of atoms F given
by on(x, y), ontable(x), and clear(x), where x and y range over the block labels A, B, and C.
The figure shows the graph associated to the problem, whose solution is a path connecting
the node representing the initial situation with a node representing a goal situation.

The Blocks World is simple for people but until recently, not so easy for domain-
independent planners that must accept any planning problem P = 〈F, I, O,G〉 in their
input, for any domain, and solve it automatically without assuming additional knowledge.
Indeed, the number of states in a Blocks World problem with n blocks is exponential in n,
as the states include all the n! possible towers of n blocks plus additional combinations of
lower towers.

It may be argued that people solve a problem like Blocks World with domain-specific
control knowledge; namely, knowledge about how problems in the domain are solved, rather
than just knowledge about what the problem is about. Domain-specific control knowledge
for Blocks, for example, may state that ‘bad placed’ blocks and blocks above them must
be all moved, and that blocks should be moved onto other blocks only when the latter are
‘well placed’. Many arguments have been raised against the view of humans as ‘general
problem solvers’, some casting the mind as a collection of specialized modules evolved to
solve the specific problems of our Pleistocene ancestors [100]. Yet, the arguments against
generality are speculative, and it’s not clear what the modules are, how specialized they
are, nor what are the specific problems that they evolved to solve. Also, if there are many
modules, some mechanism would still have to determine which module to use and when, and
this mechanism can’t be domain-specific. Approaches that deny general problem solving
abilities may be actually pushing the complexity of the problem one level up, to the module
or modules that must control the rest of the modules.

Actually, these questions involve computational and complexity issues that cannot be
answered fully without knowing whether some form of ‘generality’ is computationally feasible,
and what the price for this generality is. Indeed, why deny general problem solving abilities a
priori if it is computationally feasible and cheap? Of course, due to the theoretical complexity
of planning we cannot expect a general planner to efficiently solve every problem from every
possible domain, yet a general planner will be useful enough for an agent if it can solve
problems from many domains, provided that the domains themselves are not inherently that
hard, and that the size of a problem, as measured by the number of actions and variables,
is not by itself an impediment to its solution. This is actually what modern AI planners
manage to do. We will see below how this is accomplished and why this is relevant from a
cognitive perspective.

5 Heuristics

One way to search for a path linking a source node to a goal node in a huge graph is by
providing the search with a sense of direction. Consider for example the problem of looking
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on a map for a good route between Los Angeles (LA) and New York (NY), regarding the
map as a graph whose nodes are cities, and whose edges connect pairs of cities through
directed routes at a cost proportional to the route length. Dijkstra’s algorithm, sketched
above, provides a way for finding routes in such graphs. If our map covers all of North
America, however, the algorithm would appear to behave in a strange manner, finding first
shortest paths to all cities that are closer to LA than NY (like Mexico City) whether they
are on the way to NY or not. The search in such a case is said to be blind, meaning that
information about the goal is not used in the exploration of the map. This is definitely
not the way that people search for routes in a map. If they want to go to a city that is
Northeast, they will look for routes headed in that direction. The search is then focused and
the total number of cities in the map is less of a problem. This basic intuition about goal-
directed search was incorporated into AI search algorithms in the 60’s and 70’s in the form
of heuristic functions : functions h(s) that provide a quick-and-dirty estimate of the distance
or cost separating a state s from a goal state. In the route finding problem, for example,
a useful heuristic h(s) is the Euclidean distance separating a city s from the target city.
This is a heuristic that is very easy to compute and which provides a good approximation
of the optimal cost h∗(s) of reaching the goal from s, whose exact computation would be
much harder (as hard indeed as solving the original problem). Interestingly, if the evaluation
function g(s) used to select the next node to label in Dijkstra’s algorithm is replaced by the
more informed function f(s) = g(s) + h(s) that incorporates both the cost from s0 to s and
an estimate of the cost to go from s to the goal, an heuristic search algorithm known as A*
is obtained that can look for paths to the goal much more effectively [45].4 Heuristic search
algorithms express a form of goal-driven search, where the goal is no longer passive in the
search process, but actively biases the search through the heuristic term h(s). In the extreme
case in which the heuristic h(s) is perfect, i.e., the estimates h(s) and the true costs h∗(s)
coincide for all states, A* goes straight to the goal with no search at all. At the same time,
if the heuristic is completely uninformative, as the null heuristic h(s) = 0 for all states, A*
reduces to Dijkstra’s algorithm. In the middle, when 0 ≤ h(s) ≤ h∗(s) for all s, the heuristic
h is said to be admissible and A* preserves the optimality properties of Dijkstra but does
less work. Indeed, the closer to h∗, the more informed the heuristic, and the less number of
states that are visited in the search. Heuristic search methods have been used for finding
optimal solutions to problems like Rubik’s Cube that involve more than 1019 states. The
key is the use of suitable admissible heuristic functions h(s) that allow for optimal solutions
while considering a tiny fraction of the problem states [65].

6 Domain-independent Generation of Heuristics

Heuristic search algorithms express a form of goal-directed search where heuristic functions
are used to guide the search towards the goal. A key question is how such heuristics can
be obtained for a given problem. A useful heuristic is one that provides good estimates
of the cost to the goal and can be computed reasonably fast. Heuristics are traditionally
devised according to the problem at hand: the Euclidean distance is a good heuristic for

4This description of A* assumes that the heuristic is monotonic. A more complete description of A* and
variations can be found in the standard textbooks [84, 89].
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Figure 2: The sliding 15-puzzle where the goal is to get to a configuration where the tiles are
ordered by number with the empty square last. The actions allowed are those that slide a tile
into the empty square. While the problem is not simple, the heuristic that sums the horizontal
and vertical distances of each tile to its target position is simple to compute and provides an
informative estimate of the number of steps to the goal. In planning, heuristic functions are
obtained automatically from the problem representation.

route finding, the sum of the Manhattan distances of each tile to its destination is a good
heuristic for the sliding puzzles, and so on.5 The general idea that emerges from the various
heuristics developed for different problems is that heuristics h(s) can be seen as encoding the
cost of reaching the goal from the state s in a problem that is simpler than the original one
[95, 77, 84]. For example, the sum of the Manhattan distances in the sliding puzzles (Fig. 2),
corresponds to the optimal cost of a simplification of the puzzle where tiles can be moved
to adjacent positions, whether such positions are empty or not. Similarly, the Euclidean
heuristic for route finding is the cost of a simplification where straight routes are added
between any pair of cities. The simplified problems are normally referred to as relaxations
of the original problem.

The key development in modern planning research in AI was the realization that useful
heuristics could be derived automatically from the representation of the problem in a domain-
independent language such as Strips [74, 18, 13]. It does not matter what the problem is
about, a domain-independent relaxation is obtained directly and effectively from the problem
representation from which heuristics that are adapted to the problem can be computed.

The most common and useful domain-independent relaxation in planning is the delete-
relaxation that maps a problem P = 〈F, I, O,G〉 in Strips into a problem P+ = 〈F, I, O+, G〉
that is exactly like P but with the actions in O+ set to the actions in O with empty delete
lists. That is, the delete-relaxation is a domain-independent relaxation that takes a planning
problem P and produces another problem P+ where atoms are added exactly like in P but
where atoms are never deleted. The relaxation implies, for example, that objects and agents
can be in “multiple places” at the same time, as when an object or an agent moves into a
new place, the atom encoding the old location is not deleted. Relaxations, however, are not
aimed at providing accurate models of the world; quite the opposite, simplified and even

5The Manhattan distance of a tile is the sum of the horizon and vertical distances that separate its current
position from its destination.
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meaningless models of the world that while not accurate yield useful heuristics.
The domain-independent delete-relaxation heuristic is obtained as an approximation of

the optimal cost of the delete-relaxation P+, obtained from the cost of a plan that solves P+

not necessarily optimally.6 The reason that an approximation is needed is because finding an
optimal plan for a delete-free planning problem like P+ is still a computationally intractable
task (also NP-hard). On the other hand, finding just one plan for the relaxation whether
optimal or not, can be done quickly and efficiently. The property that allows for this is
decomposability: a problem without deletes is decomposable in the sense that a plan π for a
joint goal G1 and G2 can always be obtained from a plan π1 for the goal G1 and a plan π2
for the goal G2. Indeed, it can be shown that the concatenation of the two plans π = π1, π2
in either order, is one such plan. This property allows for a simple method for computing
plans for the relaxation from which the heuristics are derived.

The main idea behind the procedure for computing the heuristic h(s) for an arbitrary
planning problem P can be explained in a few lines. For this, let P (s) refer to the problem
that is like P but with the initial situation set to the state s, and let P+(s) stand for the
delete-relaxation of P (s), i.e., the problem that is like P (s) but where the delete-lists are
empty. The heuristic h(s) is computed from a plan for the relaxation P+(s) that is obtained
using the decomposition property and a simple iteration. Basically, the plans for achieving
the atoms p that are already true in the state s, i.e., p ∈ s, are the empty plans, and if
π1, π2, . . . , πm are the plans for achieving each of the preconditions p1, p2, . . . , pm of an
action a that has the atom q in the add list, π = π1, π2, . . . , πm followed by the action a is
a plan for achieving q. It can be shown that this iteration yields a plan in the relaxation
P+(s) for each atom p that has a plan in the original problem P (s), in a number of steps
that is bounded by the number of variables in the problem. A plan for the actual goal G
of P (s) in the relaxation P+(s) can be obtained in a similar manner by just concatenating
the plans for each of the atoms q in G in any order. Such a plan for the relaxation P+(s),
denoted as π+(s), is usually called the relaxed plan. The heuristic h(s) is set to the cost of
such a plan. A better estimate can be obtained if duplicate actions are removed every time
plans are concatenated [58]. Other heuristics based also on the delete-relaxation such as the
additive heuristic [13] and the FF heuristic [48], are as informative as this heuristic but can
be computed faster. Notice that a plan π+(s) for the relaxation yields the heuristic value
h(s) that estimates the cost from s to the goal for the state s only. This computation thus
must be repeated for every state whose heuristic value is needed.

Figure 3 displays a fragment of the directed graph corresponding to the Blocks World
problem shown in Figure 1, with the automatically derived heuristic values next to some of
the nodes. The heuristic values shown are computed very fast, in low polynomial time, using
an algorithm similar to the one described above, with h(s) representing an approximation
of the number of actions needed (cost) to solve the relaxed problem P+(s). Actually, the
instance shown can be solved with no search at all by just selecting in each node, starting
from the source node, the action that leads to the node with a lower heuristic value (closer
to the goal). The resulting plan is shown as a red path in the figure.

In order to get a more vivid idea of where the heuristic values shown in the figure come

6Heuristics derived in this way are not admissible; i.e., they may overestimate the true costs and hence
are not suitable for computing optimal plans.
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Figure 3: A fragment of the graph corresponding to the blocks problem with the automatically
derived heuristic values next to some of the nodes. The heuristic values are computed in low
polynomial time and provide the search with a sense of direction. The instance can actually be
solved without any search by just performing in each state the action that leads to the node with
a lower heuristic value (closer to the goal). The resulting plan is shown in red; helpful actions are
shown in blue.

from, consider the heuristic h(s) for the initial state where block A is on B, and both B and
C are on the table. In order to get the goal ‘B on C’ in the relaxation from the state s, two
actions are needed: one to get A out of the way to achieve the preconditions for moving B,
the second to move B on top of C. On the other hand, in order to achieve the second goal
‘C on A’ in the relaxation from s, just the action of moving C to A is needed. The result
is a heuristic value h(s) = 3 as shown, which actually coincides in this case with the cost of
the best plan to achieve the joint goal from s in the non-relaxed problem P (s). Nonetheless,
this is just a coincidence, and indeed, the best plans in the relaxation P+(s) can be quite
different than the best plans in the original problem P (s). The best plan for P (s) is unique,
moving A to the table, then C on A, and finally B on C. On the other hand, a possible
optimal plan in the relaxation P+(s) is to move first C on A, then A on the table, and finally
B on C. Of course, this plan does not make any sense in the real problem where A can’t be
moved when covered by C, yet the relaxation is not aimed at capturing the real problem or
the real physics, it is aimed at producing informative but quick estimates of the cost to the
goal. The reader can verify that for the leftmost child s′ of the initial state s, the costs of
the problem P (s′) and the relaxation P+(s′) no longer coincide. The former is 4, while the
latter is 3, the difference arising from the goal ‘C on A’ that in the original problem must
be undone and then redone. On the other hand, in the relaxation, this is never needed as
no atom is ever deleted.

One last point about the domain-independent relaxation and the resulting heuristics: the
automatic computation of the heuristic value h(s) from a plan π+(s) for the relaxation P+(s)
yields also relevant structural information that is not captured in the estimates themselves.
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In particular, among all the actions that are applicable in the state s, the ‘relaxed plan’
suggests the ones that appear as most relevant. These are the actions that are applicable
in the state s and form part of the relaxed plan. In planning, such actions are said to be
‘helpful’ [48], and this structural information is used too, in one way or another in every
state-of-the-art planner. Figure 3 shows the helpful actions in each of the states on the
way to the goal by means of arrows depicted in blue. As it can be seen, two of the three
applicable actions in the root state are helpful, just two of the six applicable actions are
helpful in the second state, and just one action is helpful in the last state before the goal. It
is not always the case that the best action in a state is among the ones found to be helpful
in that state, or among the ones leading to the children with lowest heuristic values, yet this
is often the case and this suffices for making the heuristic and the relaxation so useful. It is
also interesting that the notion of helpful actions that emerges from the relaxation suggests
a model for identifying the actions that appear as most promising in a state which does
not require evaluating them first. This information can be used indeed for deciding which
actions to consider in a state, possibly ignoring the other actions. The resulting search is
not necessarily complete but it can be quite effective [48]. We will come back to this point
below.

7 Heuristic Search

Once a heuristic h(s) is available for estimating the cost to the goal from s, the question is
how to use it for finding a path to the goal. The simplest method for using the heuristic is
by selecting the action a in s that produces the state s′ that appears to be closest to the
goal; i.e. the one with minimum h(s′) value. This algorithm is known as hill-climbing, from
its use in maximization problems, as it moves the search along the slope of the heuristic
function h where a value h(s) = 0 denotes a goal. The problem with this and other local
search algorithms is that they can get stuck in states where none of the children improves
on (decreases) the heuristic value of the parent.

There are many heuristic search algorithms that avoid the problems of hill-climbing, and
they can be classified into two groups: off-line and on-line algorithms. If planning is thought
of as “thinking before acting”, off-line search algorithms can be understood as thinking all
the way to the solution before acting, while on-line algorithms interleave thinking and acting.
The algorithm A* described above is an off-line search algorithm with several guarantees:
it is complete; i.e., it will find a solution if there is one, and it is optimal if the heuristic
h(s) is admissible (doesn’t overestimate true costs). On the other hand, an algorithm like
hill-climbing can be used as an on-line algorithm that iteratively applies the action that leads
to the best child according to the heuristic. In the on-line setting, the algorithm is known as
the greedy algorithm; the name greedy implying that actions are selected fast after a shallow
and quick lookahead. Of course, more informed versions of this greedy on-line algorithm
can be obtained by performing a deeper lookahead, with a lookahead of two levels, resulting
in the action that leads to the best grandchild, a lookahead of three levels, resulting in the
action that leads to the best great grandchild, and so on. A similar idea is used in chess
playing programs that involve a slightly different model with adversarial agents [79, 89]. Two
problems with greedy algorithms enhanced with a fixed depth lookahead are that they can
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be trapped into a loop, returning to states that have been visited earlier in the execution,
and that the computational effort grows exponentially with the lookahead depth. The loop
problem in the greedy algorithm has a very elegant and powerful solution: the algorithm
Learning Real Time A* or LRTA* [64] behaves exactly as the greedy algorithm but once
it selects the action a in the state s, and before moving to the resulting state s′, it changes
the heuristic value h(s) to c(a, s) + h(s′), where c(a, s) is the cost of the action a in s, and
h(s′) is the heuristic value of s′. If the problem has no states from which the goal cannot
be reached (dead-ends), this simple type of learning guarantees that the goal will eventually
be reached, and moreover, that if the process is restarted many times while preserving the
heuristic values that have been learned, the goal will eventually be reached optimally, if
the initial heuristic is admissible. The algorithm LRTA* is also interesting because it can
be easily generalized to other models where actions have probabilistic effects and states are
fully or partially observable. The generalized algorithm is known as Real-Time Dynamic
Programming or RTDP [8, 14, 15]. One last on-line algorithm for probabilistic models that
has become popular in recent years due to its breakthrough performance in the game of Go
is UCT [61, 38]. Closely related to UCT are on-line variants of AO* [17], an extension of
the A* algorithm for models where actions have non-deterministic effects [68, 84].

8 Heuristics, Values, and Appraisals

Heuristic evaluation functions are used in other settings like chess playing programs and
reinforcement learning. In chess, the evaluation functions are programmed by hand [79, 84],
while in reinforcement learning, they are learned by trial-and-error [98]. Reinforcement
learning is a family of model-free methods that have been shown to be effective in low-level
tasks, and to provide an accurate account of learning in the brain [92]. Heuristic evaluation
functions in domain-independent planning are computed instead using model-based methods
where suitable relaxations are solved from scratch. These methods have been shown to work
over large problems involving hundred of actions and fluents, and interesting lessons can
be drawn from these methods as well. Indeed, while feelings and emotions are currently
thought of as providing the appraisals that are necessary for navigating in a complex world
[31], there are actually very few accounts of how such appraisals may be computed. In
planning, the appraisals that manage to integrate information about the current situation,
the goal, and the actions, for directing the agent towards the goal, are the heuristics computed
from relaxations of the problem. The computational model of appraisals that is based on
the solution of relaxations that can be solved in low-polynomial time, suggests potential
explanations for a number of observations. For example, the heuristics that result are ‘fast
and frugal’ but unlike the heuristics considered by Gigerenzer and others [41, 40], they are
also general: they apply to all the problems that fit the classical planning model or that
can be cast in that form. The use of relaxations can also potentially explain why appraisals
may be opaque from a cognitive point of view, and thus not be conscious [104, 47, 54]. This
is because the appraisals are obtained from a simplified model where, for example, objects
can be in different places at the same time, and hence where the meaning of the symbols is
different than the meaning of the symbols in the ‘true’ model. Finally, heuristic appraisals
provide the agent with a sense of direction or ‘gut feeling’ that guide the action selection in
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the presence of many alternatives, while avoiding an infinite regress in the decision process.
Indeed, the computational role of these appraisals is to avoid or at least to reduce the need to
search. Explicit evaluation of all possible courses of actions is not feasible computationally,
and the heuristics provide the necessary focus. Actually, as discussed above, relaxation-based
heuristics in planning do not only provide an account of the value of the different options,
but also of the actions that are worth evaluating; the so-called helpful actions [48]. This
second aspect, although not necessarily in this form, may potentially help to explain a key
difference between programs and humans in games such as chess, for example, where it is
well known that humans consider much fewer moves than programs.

9 Alternative Planning Methods

While the heuristic search approach to planning has come to dominate classical planning,
many other methods have been proposed, and some of them are widely used and scale up
well too. GPS, the first AI planner and one of the first AI programs, was introduced by
Newell and Simon in the 50’s [80, 81]. It introduced a technique called means-ends analysis
where differences between the current state and the goal are identified and mapped into
operators that can decrease those differences. Since then, the idea of means-ends analysis
has been refined and extended in many ways, in the formulation of planning algorithms that
are sound (only produce plans), complete (produce a plan if one exists), and effective (scale
up to large problems). By the early 90’s, the state-of-the-art planner was UCPOP [85],
an implementation of an elegant planning method known as partial-order planning, where
plans are not searched either forward from the starting state or backward from the goal,
but are constructed from a decomposition scheme in which joint goals are decomposed into
subgoals, which create as further subgoals the preconditions of the actions that can establish
them [91, 99, 72]. The actions that are incorporated into the plan are partially ordered as
needed in order to resolve possible conflicts among them. Partial-order planning algorithms
are sound and complete, but do not scale up well, as there are too many choices to make
and too little guidance on how to make them.

The situation in planning changed drastically in the middle 90’s with the introduction
of Graphplan [12], an algorithm that appeared to have little in common with previous ap-
proaches but scaled up much better. Graphplan builds a plan graph in polynomial time
reasoning forward from the initial state, which it then searches backward from the goal to
find a plan. It was shown later that the reason Graphplan scaled up well was due to a pow-
erful admissible heuristic implicit the plan graph [46]. The success of Graphplan prompted
other approaches. In the SAT approach [55], the planning problem for a fixed planning
horizon is converted into a general satisfiability problem expressed as a set of clauses (a
formula in conjunctive normal form or CNF) that is fed into state-of-the-art SAT solvers
that currently manage to solve huge SAT instances even if the SAT problem is NP-complete
[11]. A clause is a disjunction of literals, i.e., propositional symbols or their negations as in
x∨¬y∨z, and a set of clauses is satisfiable if there is a truth assignment to the symbols such
that each clause has at least one true literal. In the CNF encoding of the planning prob-
lem, atoms and actions are indexed with time indices that range from zero until a planning
horizon that is increased one by one until the resulting clauses are satisfiable and a plan can
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be read from the satisfying assignment. Due to the excellent performance of current SAT
solvers, SAT planners manage to solve large problems very fast, making them practically
competitive with heuristic search planners [88]. State-of-the-art heuristic search planners
use heuristic values derived from the delete-relaxation [74, 18], information about the action
that are most helpful [48], and implicit subgoals of the problem, called landmarks, that are
also extracted automatically from the problem with methods similar to those used for de-
riving heuristics [49, 87]. Recently, the success of classical planners has also been explained
in term of a structural width parameter that appears to be bounded and small in many
domains when goals are restricted to single atoms. Such problems can be solved in time
that is exponential in their width, while problems with joint goals can often be decomposed
easily into a sequence of low-width problems with single goals [67].

10 Richer Planning Models

Classical planning is planning with deterministic actions from an initial state that is fully
known. Many planning problems, however, involve features that are not part of this basic
model such as uncertainty, incomplete information, and soft goals. Two types of methods
have been pursued for dealing with such features: a top-down approach, where native solvers
have been developed for more expressive planning models, and a bottom-up approach, where
the power of classical planners is exploited by means of translations.

10.1 MDP and POMDP Planning

MDP and POMDP planners are examples of native solvers for more expressive planning
models that accommodate stochastic actions, and either full or partial state observability. A
Markov Decision Process (MDP) is a state model where the state transition function f(a, s)
is replaced by state transition probabilities Pa(s

′|s), and the next state s′, while no longer
predictable with certainty, is assumed to be fully observable [10, 86, 21]. A solution to an
MDP is a function π from states into actions, called a policy, that drives the system to a
goal state with certainty. A policy induces a probability distribution over the possible state
trajectories, and since every state trajectory has a cost, an optimal policy is a policy that
drives the system to the goal at a minimum expected cost.

Partially Observable MDPs (POMDPs) extend MDPs by relaxing the assumptions that
states are fully observable [3, 10, 53]. In a POMDP, a set of observation tokens o ∈ O is
assumed along with a sensor model Pa(o|s) that relates the true but hidden state s of the
system with the observable token o. In POMDPs, the initial state of the system is not known
but is characterized by a probability distribution, and the task is to drive the system to a
final, fully observable target state. Solutions to POMDPs are closed-loop controllers that
map belief states into actions, with optimal solutions reaching the target state at a minimum
expected cost. The belief states are probability distributions over the states.

A simple example of a POMDP is a robot that has to reach a certain location by means
of actions whose effects can only be predicted probabilistically. The state of the problem,
which is the location of the robot, is not fully observable but rather sonars or other feedback
mechanisms are used to provide the robot with partial information about the state. A map
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showing the locations that are blocked by obstacles may be available, but the map cannot
be used in a direct way, as the robot does not know with certainty its location in the map.
On the other hand, if the robot can have perfect access to its location, the problem is not a
POMDP but an MDP.

While MDPs and POMDPs are commonly described using positive or negative rewards
rather than positive costs, and using discount factors rather than goal states, simple trans-
formations are known for translating discounted reward MDPs and POMDPs into equivalent
goal MDPs and goal POMDPs as above that are strictly more expressive [10, 15]. From a
computational point of view, traditional dynamic programming algorithms have been used
to solve MDPs and POMDPs off-line [9, 50, 10], yet the methods that scale up best to larger
problems are on-line methods, closely related to the on-line heuristic search algorithms con-
sidered above for deterministic problems. These include Real-time Dynamic Programming
[8, 14, 15, 62], and UCT [61, 94, 57, 17]. These algorithms are also related to reinforcement
learning methods, which can be characterized as methods for solving an MDP by trial-and-
error without knowing the value of the cost and probability parameters [98]. Normally,
reinforcement learning algorithms learn a representation of the optimal MDP policy without
learning the value of these parameters. These are called model-free MDP methods [103, 97].
On the other hand, there are approaches that incrementally learn the MDP model and derive
the policy from the model. These are called model-based reinforcement learning methods,
and the most effective of them reduce the learning problem to a planning problem over an
‘optimistic’ model that is refined incrementally [56, 24, 2]. A last class of POMDP methods
map probabilistic planning problems into probabilistic reasoning problems over Bayesian
Networks [4, 101, 20], in analogy to the SAT approach to deterministic planning, where
atoms and actions are indexed in time up to a given planning horizon. While the reduc-
tion of planning to inference, deductive or probabilistic, is appealing, the scalability-quality
tradeoff in the probabilistic case, unlike the SAT approach in the deductive case, is not yet
clear in comparison with state-of-the-art methods.

10.2 Translations into Classical Planning

Translation-based approaches handle features that are absent from the classical model such
as soft-goals, plan-constraints, extended temporal goals, uncertainty, and partial feedback,
by compiling them away. We focus only on translations that preserve the semantics of the
original problem, yet approximate translations have been found useful as well. For example,
FF-Replan is an on-line planner for MDPs whose value has been proved in some of the MDP
planning competitions held so far [105]. FF-Replan’s approach to MDP planning is simple
but effective. It selects the action to do next using a simple relaxation of the MDP: first
the probabilities associated with the non-deterministic effects of a probabilistic action are
dropped, then the non-deterministic effects of the same action are mapped into different
deterministic actions. The relaxation thus maps an MDP where the uncertain effects are
controlled by nature into a deterministic problem where the uncertain effects are controlled
by the planning agent. Once the plan is obtained for the relaxation, the plan is executed
until the agent finds itself in a state that is different from the one predicted by the relaxation.
The process resumes from this state and the execution terminates when the goal is reached.
The resulting on-line planner is not optimal and can get trapped into dead-ends, yet in most
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domains, the simplification works rather well. A similar idea, where closed-loop feedback
controls for stochastic systems are designed using a simplified model, is common in control
engineering [82].

Features that are absent from the classical planning model include rewards, and in par-
ticular soft goals. Soft goals refer to formulas that if achieved along with the goal entail a
positive utility. In the presence of soft goals, the task is to compute action sequences that
achieve the goal and maximize overall utility, rather than sequences that achieve the goal
and minimize cost. The utility is defined as the sum of the utilities of the soft goals achieved
minus the cost of the action sequence. Soft goals express soft preferences as opposed to hard
goals that express hard preferences. For example, getting a new T-shirt can be a hard goal
for John, while getting a second T-shirt can be regarded as a soft goal. All plans must thus
deliver John a new T-shirt, but whether the best plans will deliver him a second T-shirt
or not will depend on the extra costs and utilities involved. Interestingly, it turns out that
soft-goals can be compiled away easily and efficiently resulting into standard classical plan-
ning problems with hard goals only [59]. For soft-goal atoms A one just needs to create new
atoms A′ and make them into hard goals that can be achieved in one of two ways: by means
of the new action collect(A) with precondition A and cost 0, or by means of the new action
forego(A) with no precondition and cost equal to the utility of A. The best plans for the
soft goals become the best plans for the resulting classical problem.

Uncertain information can also be compiled away in conformant problems with deter-
ministic actions [83]. These are problems where the initial state is partially known and a
plan to the goal is sought that would work for any possible initial state. The translation
maps a conformant problem P into a classical problem, whose solutions, computable with
off-the-shelf classical planners, encode the solutions to P . The complexity of the translation
is exponential in a width parameter that is often bounded and small. The ideas behind this
translation have been used since to define effective action selection mechanisms for on-line
planning in the presence of partial observability [1, 16, 93] and for computing solutions to
planning problems with uncertainty and partial feedback in the form of finite-state con-
trollers. One such finite-state controller is shown in Fig. 4 for a problem inspired by the use
of deictic representations where objects are not assumed to have unique names but can be
referred to by means of suitable indexical expressions and markers [28, 7]. In the figure, a
visual marker, that is the circle on the lower left, must be placed on top of a green block by
moving it one cell at a time. The location of the green block is not known (it can be any-
where), and the observations are whether the cell currently marked contains a green block
(G), a non-green block (B), or neither (C), and also whether the marked cell is at the level of
the table (T) or not (–). The finite-state controller shown on the right has been obtained by
running a classical planner on a suitable translation of the problem [19]. The controller has
two states, the initial state q0 and the state q1. An edge q → q′ with label o/a means to do
the action a when observing o in the state q, and to move then to the state q′. For example,
when the observation TC is received in q0, the action of moving the marker to the Right is
done, and the controller remains in the same state. The reader can check that the controller
obtained with the classical planner not only solves the original problem on the left, but also
any modification of it resulting from changes in the number or configuration of blocks. In
other words, due to its representation, the solution to the original problem generalizes to a
much larger class of problems. The problem of devising controllers or strategies that work
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q0

TB/Up

-B/Up

TC/Right

q1
-C/Down

TB/Right

-B/Down

Figure 4: Left: Problem where visual-marker (circle on the lower left) must be placed on top of a green
block by just observing what’s on the marked cell. Right: Finite-state controller obtained with a classical
planner from suitable translation. The controller has two states, the initial state q0 and the state q1. An
edge q → q′ with label o/a means to do the action a when observing o in the state q, and to move then to
the state q′. The controller shown solves the problem, and any variation of it resulting from changes in the
number or configuration of blocks.

for many or even all domain instances is usually referred to as generalized planning [70, 51].

11 Challenges

There are several open challenges in planning research. One of them is planning in the
presence of other agents that plan, often called multiagent planning. People do this naturally
all the time: walking on the street, driving, etc. The first question is how plans should be
defined. This is a subtle problem and many proposals have been put forward, often building
on equilibria notions from game theory [22, 66, 23]. Yet, there are currently no models,
algorithms, or implementations of domain-independent planners able to plan meaningfully
and efficiently in such settings. This is not entirely surprising, however, given the known
limitations of game theory as a descriptive theory of human behavior [27]. Eventually, a
working theory of multiagent planning could shed light on the computation, nature, and
role of social emotions in multiagent settings, very much as single-agent planning may shed
light on the computation, nature, and role of goal appraisals and heuristics in the single-
agent setting. A second open problem is the automatic construction and use of hierarchies.
Hierarchies form a basic component of Hierarchical Task Networks or HTNs, an alternative
model for planning that is concerned with the encoding of strategies for solving problems
[99, 34, 39], yet hierarchies play no role in state-of-the-art domain independent planners
which are completely flat. There is a large body of work on abstract problem solving that
is relevant to this question, both old [90, 63, 60, 5] and new [76, 69, 52], but no robust
answer yet. A third open problem is learning the planning models by interacting with the
environment. We have discussed model-based reinforcement learning algorithms that actively
learn model parameters such as probabilities and rewards [56, 24, 2], yet a harder problem
is learning the states themselves from partial observations. Several attempts to generalize
reinforcement learning algorithms to partially observable settings have been made, some of
which learn to identify useful features and feature histories [73, 96, 102], but none so far that
can come up with the states and models themselves in a robust and scalable manner.
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12 Discussion

The relevance of the early work in AI to Cognitive Science was based on intuition: programs
provided a way for specifying intuitions precisely and for trying them out. The more recent
work on domain-independent solvers in AI is more technical and experimental, and is focused
not on reproducing intuitions but on scalability. This may give the impression that recent
work in AI is less relevant to Cognitive Science than work in the past. This impression,
however, may prove wrong on at least two grounds. First, intuition is not what it used to
be, and it is now regarded as the tip of an iceberg whose bulk is made of massive amounts
of shallow, fast, but unconscious inference mechanisms that cannot be rendered explicit
[104, 47, 40]. Second, whatever these mechanisms are, they appear to work pretty well and
to scale up. This is no small feat, given that most methods, whether intuitive or not, do
not. By focusing on the study of meaningful models and the computational methods for
dealing with them effectively, AI may prove its relevance to the understanding of human
cognition in ways that may go well beyond the rules, cognitive architectures, and knowledge
structures of the 80’s. Human cognition, indeed, still provides the inspiration and motivation
for a lot of research in AI. The use of Bayesian networks in developmental psychology for
understanding how children acquire and use causal relations [42], and the use of reinforcement
learning algorithms in neuroscience for interpreting the activity of dopamine cells in the brain
[92], are two examples of general AI techniques that have made it recently into cognitive
science. As AI focuses on models and solvers able to scale up, more techniques are likely to
follow. In this paper, we have reviewed work in computational models of planning in AI,
with an emphasis on deterministic planning models where automatically derived relaxations
and heuristics manage to integrate information about the current situation, the goal, and
the actions for directing the agent effectively towards the goal. The computational model of
goal appraisals that is based on the solution of low-polynomial relaxations may shed light
on the computation, nature, and role of other types of appraisals, and on why appraisals are
opaque to cognition and cannot be rendered conscious or articulated in words.
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