
Search and Inference in AI Planning

Héctor Geffner

ICREA & Universitat Pompeu Fabra
Barcelona, Spain

Joint work with V. Vidal, B. Bonet, P. Haslum, H. Palacios, . . .

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 1

AI Planning

• Planning is a form of general problem solving

Problem =⇒ Language =⇒ Planner =⇒ Solution

• Idea: problems described at high-level and solved automatically

• Goal: facilitate modeling, maintain performance

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 2

Planning and General Problem Solving: How general?

For which class of problems a planner should work?

• Classical planning focuses on problems that map into state models

– state space S
– initial state s0 ∈ S
– goal states SG ⊆ S
– actions A(s) applicable in each state s
– transition function s′ = f(a, s), a ∈ A(s)
– action costs c(a, s) > 0

• A solution of this class of models is a sequence of applicable actions
mapping the inital state s0 into a goal state SG

• It is optimal if it minimizes sum of action costs

• Other models for planning with uncertainty (conformant, contingent,
Markov Decision Processes, etc), temporal planning, etc.

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 3

Planning Languages

specification: concise model description
computation: reveal useful heuristic info

• A problem in Strips is a tuple 〈A,O, I, G〉:

– A stands for set of all atoms (boolean vars)
– O stands for set of all operators (actions)
– I ⊆ A stands for initial situation
– G ⊆ A stands for goal situation

• Operators o ∈ O represented by three lists

-- the Add list Add(o) ⊆ A
-- the Delete list Del(o) ⊆ A
-- the Precondition list Pre(o) ⊆ A

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 4

Strips: From Language to Models

Strips problem P = 〈A,O, I, G〉 determines state model S(P) where

• the states s ∈ S are collections of atoms

• the initial state s0 is I

• the goal states s are such that G ⊆ s

• the actions a in A(s) are s.t. Prec(a) ⊆ s

• the next state is s′ = s−Del(a) + Add(a)

• action costs c(a, s) are all 1

The (optimal) solution of problem P is the (optimal) solution of State
Model S(P)

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 5

The Talk

• Focus on approaches for optimal sequential/parallel/temporal domain-
independent planning (SAT, Graphplan, Heuristic Search, CP)

• Significant progress in last decade as a result of empirical methodology
and novel ideas

• Three messages:

1. It is all (or mostly) branching and pruning
2. Yet novel and powerful techniques developed in planning context
3. Some of these techniques potentially applicable in other contexts

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 6

Planning as SAT

Theory with horizon n for Strips problem P = 〈A,O, I, G〉:

1. Init: p0 for p ∈ I, ¬q0 for q 6∈ I

2. Goal: pn for p ∈ G

3. Actions: For i = 0, 1, . . . , n− 1 (including NO-OPs)

ai ⊃ pi for p ∈ Prec(a) (Preconds)
ai ⊃ pi+1 for each p ∈ Add(a) (Adds)
ai ⊃ ¬pi+1 for each p ∈ Del(a) (Deletes)

4. Frame:
∧

a:p∈Add(a)¬ai ⊃ ¬pi+1

5. Concurrency: If a and a′ incompatible, ¬(ai ∧ a′i)

In practice, however, SAT and CSP planner build theory from Graphplan's
planning graph that encodes useful lower bounds

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 7

Planning Graphs and Lower Bounds

• Build layered graph P0, A0, P1, A1, . . .

...

P0 A0 P1 A1

....

....

P0 = {p ∈ Init}
Ai = {a ∈ O | Prec(a) ⊆ Pi}

Pi+1 = {p ∈ Add(a) | a ∈ Ai}

Heuristic h1(G) defined as time where G becomes reachable is a lower
bound on number of time steps to actually achieve G:

h1(G) def= min i s.t. G ⊆ Pi

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 8

The Planning Graph and Variable Elimination

• Graphplan actually builds more complex layered graph by keeping track
of atom and action pairs that cannnot be reached simultaneously
(mutexes)

• Resulting heuristic h2 is more informed than h1; i.e., 0 ≤ h1 ≤ h2 ≤ h∗

• Graphplan builds graph forward in first phase, then extracts plan
backwards by backtracking

• This is analogous to bounded variable elimination (Dechter et al):

– In VE, variables eliminated in one order (inducing constraints of size
up to n) and solved backtrack-free in reverse order

– In Bounded VE, var elimation phase yields constraints of bounded
size m, followed by backtrack search in reverse

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 9

The planning Graph and Variable Elimination (cont'd)

• Graphplan does actually a precise form of Bounded-m Block Elimina-
tion where whole layers are eliminated in one step inducing constraints
of size m over next layer

• While Bounded-m Block Elimination is exponential in the size of the
blocks/layers in the worst case; Graphplan does it in polynomial time
exploiting simple stratified structure of Strips theories [Geffner KR-04]

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 10

Two reconstructions of Graphplan

Graphplan can thus be understood fully as either

• a CSP planner that does Bounded-2 Layer Elimination followed by
Backtrack search, or

• an Heuristic Search Planner that first computes an admissible heuristic
and then uses it to drive an IDA* search from the goal

It is interesting that both approaches yield equivalent account in this
setting

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 11

Temporal Planning: the Challenge

• We can extract lower bounds h automatically from problems, and get
a reasonable optimal sequential planner by using an heuristic search
algorithm like IDA*

• We can translate the planning graph into SAT, and get a reasonable
optimal parallel planner using a state-of-the-art SAT solver

• Neither approach, however, extends naturally to temporal planning:

– in HS approaches, the branching scheme is not suitable
– in SAT approaches, the representation is not suitable

• These limitations were the motivation for CPT, a CP-based temporal
planner that

– minimizes makespan, and
– is competitive with SAT planners when durations are uniform

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 12

Semantics of Temporal Plans

A temporal (Strips) plan is a set of actions a ∈ Steps with their start
times T (a) such that:

1 Truth Every precondition p of a is true at T (a)

2 Mutex: Interfering actions in the plan do not overlap in time

Assuming 'dummy' actions Start and End in plan, 1 decomposed as

1.1 Precond: Every precond p of a ∈ Steps is supported in the plan by an
earlier action a′

1.2 Causal Link: If a′ supports precond p of a in plan, then all actions a′′

in plan that delete p must come before a′ or after a

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 13

Partial Order Causal Link (POCL) Branching

POCL planners (temporal and non-temporal alike), start with a partial
plan with Start and End and then loop:

• adding actions, supports, and precedences to enforce 1.1 (fix open
supports)

• adding precedences to enforce 1.2 and 2 (fix threats)

• backtracking when resulting precedences in the plan form an incon-
sistent Simple Temporal Network (STP) [Meiri et al], or no other
fix

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 14

The problem with POCL Planning (and Dynamic CSP!)

• POCL branching yields a simple and elegant algorithm for temporal
planning; the problem is that it is just . . . branching!

• Pruning partial plans whose STP network is not consistent does not
suffice to match performance of modern planners

• For this, it is crucial to predict failures earlier; the question is how
to do it.

• The key part is to be able to reason with all possible actions, and
not only those in current partial plan.

• This is indeed what Graphplan and SAT approaches do in non-temporal
setting

(Similar problem in Dynamic CSPs; need to reason about all possible
vars, not only those in 'current' CSP)

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 15

CPT: A CP-based POCL Planner

• Key novelty in CPT are the strong mechanisms for reasoning about all
actions in the domain (start times, precedences, supports, etc), and
not only those in current plan.

• This involves novel constraint-based representation and propagation
rules, as in particular, an action can occur 0, 1, 2, or many times in
the plan!

• CPT provides effective solution to the underlying Dynamic CSP

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 16

CPT: Formulation

• Variables

• Preprocessing

• Constraints

• Branching

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 17

Variables

For all actions in the domain a ∈ O and preconditions p ∈ Pre(a):

• T (a) :: [0,∞] = starting time of a

• S(p, a) :: {a′ ∈ O|p ∈ Add(a′)} = support of p for a

• T (p, a) :: [0,∞] = starting time of support S(p, a)

• InP lan(a) :: [0, 1] = presence of a in the plan

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 18

Preprocessing

• Initial lower bounds: Tmin(a) = h2
T (a)

• Structural mutexes: pairs of atoms p, q for which h2
T ({p, q}) = ∞

• e-deleters: extended deletes computed from structural mutexes

• Distances:

– dist(a, a′) = h1
T (a′) with I = Ia

– dist(Start, a) = h2
T (a)

– dist(a,End): shortest-path algorithm on a `relevance graph'

• E-deleters and Distances used to make constraints tighter;
δ(a′, a) def= duration(a′) + dist(a′, a)

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 19

Constraints

• Bounds: for all a ∈ O

T (Start) + dist(Start, a) ≤ T (a)

T (a) + dist(a,End) ≤ T (End)

• Preconditions: supporter a′ of precondition p of a must precede a:

T (a) ≥ min
a′∈[D(S(p,a)]

[T (a′) + δ(a′, a)]

T (a′) + δ(a′, a) > T (a) → S(p, a) 6= a′

• Causal Link Constraints: for all a ∈ O, p ∈ pre(a) and a′ that e-deletes
p, a′ precedes S(p, a) or follows a:

T (a′)+dur(a′)+ min
a′′∈D[S(p,a)]

dist(a′, a′′) ≤ T (p, a) ∨ T (a)+δ(a, a′) ≤ T (a′)

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 20

Constraints (cont'd)

• Mutex Constraints: for effect-interfering a and a′

T (a) + δ(a, a′) ≤ T (a′) ∨ T (a′) + δ(a′, a) ≤ T (a)

• Support Constraints: T (p, a) and S(p, a) related by

S(p, a) = a′ → T (p, a) = T (a′)

min
a′∈D[S(p,a)]

T (a′) ≤ T (p, a) ≤ max
a′∈D[S(p,a)]

T (a′)

T (p, a) 6= T (a′) → S(p, a) 6= a′

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 21

Branching

• A Support Threat 〈a′, S(p, a)〉 generates the split

[T (a′) + dur(a′) + min
a′′∈D[S(p,a)]

dist(a′, a′′) ≤ T (p, a);

T (a) + δ(a, a′) ≤ T (a′)]

• An Open Condition S(p, a) generates the split

[S(p, a) = a′;S(p, a) 6= a′]

• A Mutex Threat 〈a, a′〉 generates the split

[T (a) + δ(a, a′) ≤ T (a′);T (a′) + δ(a′, a) ≤ T (a)]

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 22

Two subtle issues and their solutions in CPT

1. Conditional variables: variables associated with actions not yet in-
cluded or excluded from current plan

• propagate into those variables but never from them
• domains meaningful under assumption that action eventually in plan

2. Action Types vs. Tokens: dealing with unknown number of tokens?

• Variables associated with both action types and action tokens
• Action tokens generated dynamically from action types by cloning
• Action types summarize all tokens of same type not yet in plan

-- 1 relevant for Dynamic CSP: need to reason about all potential vars
and not only those in 'current' CSP

-- 2 relevant for certain Symmetries; e.g., hammers in box 'symmetrical'
til one picked

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 23

Current Status of CPT

1. It currently appears as the best optimal temporal planner

2. Competitive with SAT parallel planners in the special case when action
durations are uniform

3. Recent extension solves wide range of benchmark domains backtrack-
free! (Blocks, Logistics, Satellite, Gripper, Miconic, Rovers, etc).

4. In such a case, optimality is not enforced (see Vincent presentation
later today for details)

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 24

Summary

• Optimal planners (Graphplan, SAT, Heuristic Search) can all be under-
stood as branching and pruning

• Big performance jump in last decade is the result of pruning; til Graph-
plan search was basically blind, although useful branching schemes

• Planning theories have stratified structure which is exploited in con-
struction of planning graph and used by SAT approaches

• Temporal planning particularly suited for CP; CPT combines POCL
branching, lower bounds obtained at preprocessing, and pruning based
on CP formulation that reasons about all actions in the domain

• Some ideas in CPT potentially relevant for dealing with Dynamic CSPs
and certain classes of symmetries

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005 25

