Search and Inference in AI Planning

Héctor Geffner

ICREA & Universitat Pompeu Fabra Barcelona, Spain

Joint work with V. Vidal, B. Bonet, P. Haslum, H. Palacios, ...

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005

AI Planning

• Planning is a form of **general problem solving**

Problem
$$\implies$$
 Language \implies Planner \implies Solution

- Idea: problems described at high-level and solved automatically
- Goal: facilitate modeling, maintain performance

Planning and General Problem Solving: How general?

For which **class of problems** a planner should work?

- Classical planning focuses on problems that map into state models
 - state space S
 - initial state $s_0 \in S$
 - goal states $S_G \subseteq S$
 - actions A(s) applicable in each state s
 - transition function s' = f(a, s), $a \in A(s)$
 - action costs c(a,s) > 0
- A solution of this class of models is a sequence of applicable actions mapping the inital state s_0 into a goal state S_G
- It is optimal if it minimizes sum of action costs
- Other models for planning with uncertainty (conformant, contingent, Markov Decision Processes, etc), temporal planning, etc.

Planning Languages

specification: concise model description
computation: reveal useful heuristic info

- A problem in Strips is a tuple $\langle A, O, I, G \rangle$:
 - -A stands for set of all **atoms** (boolean vars)
 - O stands for set of all operators (actions)
 - $I \subseteq A$ stands for initial situation
 - $G \subseteq A$ stands for goal situation
- Operators $o \in O$ represented by three lists
 - -- the **Add** list $Add(o) \subseteq A$
 - -- the **Delete** list $Del(o) \subseteq A$
 - -- the **Precondition** list $Pre(o) \subseteq A$

Strips: From Language to Models

Strips problem $P = \langle A, O, I, G \rangle$ determines state model S(P) where

- the states $s \in S$ are collections of atoms
- the initial state s_0 is I
- the goal states s are such that $G\subseteq s$
- the actions a in A(s) are s.t. $Prec(a) \subseteq s$
- the next state is s' = s Del(a) + Add(a)
- action costs c(a,s) are all 1

The (optimal) solution of problem P is the (optimal) solution of State Model $\mathcal{S}(P)$

The Talk

- Focus on approaches for **optimal sequential/parallel/temporal domainindependent planning** (SAT, Graphplan, Heuristic Search, CP)
- Significant progress in last decade as a result of empirical methodology and novel ideas
- Three messages:
 - 1. It is all (or mostly) branching and pruning
 - 2. Yet novel and powerful techniques developed in planning context
 - 3. Some of these techniques potentially applicable in other contexts

Planning as SAT

Theory with horizon n for Strips problem $P = \langle A, O, I, G \rangle$:

- **1.** Init: p_0 for $p \in I$, $\neg q_0$ for $q \notin I$
- **2. Goal:** p_n for $p \in G$
- 3. Actions: For $i = 0, 1, \dots, n-1$ (including NO-OPs)
 - $a_i \supset p_i$ for $p \in Prec(a)$ (Preconds) $a_i \supset p_{i+1}$ for each $p \in Add(a)$ (Adds) $a_i \supset \neg p_{i+1}$ for each $p \in Del(a)$ (Deletes)
- 4. Frame: $\bigwedge_{a:p \in Add(a)} \neg a_i \supset \neg p_{i+1}$
- 5. Concurrency: If a and a' incompatible, $\neg(a_i \wedge a'_i)$

In practice, however, SAT and CSP planner build theory from Graphplan's planning graph that encodes useful lower bounds

Planning Graphs and Lower Bounds

• Build layered graph P_0 , A_0 , P_1 , A_1 , ...

Heuristic $h_1(G)$ defined as time where G becomes **reachable** is a **lower bound** on **number of time steps** to actually achieve G:

$$h_1(G) \stackrel{\text{def}}{=} \min i \text{ s.t. } G \subseteq P_i$$

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005

The Planning Graph and Variable Elimination

- Graphplan actually builds more complex layered graph by keeping track of atom and action **pairs** that cannnot be reached simultaneously (mutexes)
- Resulting heuristic h_2 is more informed than h_1 ; i.e., $0 \le h_1 \le h_2 \le h^*$
- Graphplan builds graph forward in first phase, then extracts plan backwards by backtracking
- This is analogous to **bounded variable elimination** (Dechter et al):
 - In VE, variables eliminated in one order (inducing constraints of size up to n) and solved backtrack-free in reverse order
 - In Bounded VE, var elimation phase yields constraints of **bounded** size m, followed by backtrack search in reverse

The planning Graph and Variable Elimination (cont'd)

- Graphplan does actually a precise form of **Bounded**-m **Block Elimina**tion where whole layers are eliminated in one step inducing constraints of size m over next layer
- While Bounded-*m* Block Elimination is **exponential** in the size of the blocks/layers in the worst case; Graphplan does it in **polynomial time** exploiting simple **stratified** structure of Strips theories [Geffner KR-04]

Two reconstructions of Graphplan

Graphplan can thus be understood fully as either

- a CSP planner that does Bounded-2 Layer Elimination followed by Backtrack search, or
- an Heuristic Search Planner that first computes an admissible heuristic and then uses it to drive an IDA* search from the goal

It is interesting that both approaches yield **equivalent account** in this setting

Temporal Planning: the Challenge

- We can extract lower bounds *h* automatically from problems, and get a reasonable optimal **sequential** planner by using an **heuristic search** algorithm like IDA*
- We can translate the planning graph into SAT, and get a reasonable optimal **parallel** planner using a state-of-the-art **SAT solver**
- Neither approach, however, extends naturally to temporal planning:
 - in HS approaches, the branching scheme is not suitable
 - in SAT approaches, the **representation** is not suitable
- These limitations were the motivation for **CPT**, a CP-based temporal planner that
 - minimizes makespan, and
 - is competitive with SAT planners when durations are uniform

Semantics of Temporal Plans

A temporal (Strips) plan is a set of actions $a \in Steps$ with their start times T(a) such that:

- 1 Truth Every precondition p of a is true at T(a)
- 2 Mutex: Interfering actions in the plan do not overlap in time

Assuming 'dummy' actions *Start* and *End* in plan, 1 decomposed as

- 1.1 Precond: Every precond p of $a \in Steps$ is supported in the plan by an earlier action a'
- 1.2 Causal Link: If a' supports precond p of a in plan, then all actions a'' in plan that delete p must come before a' or after a

Partial Order Causal Link (POCL) Branching

POCL planners (temporal and non-temporal alike), start with a partial plan with Start and End and then loop:

- adding actions, supports, and precedences to enforce 1.1 (fix open supports)
- adding precedences to enforce 1.2 and 2 (fix threats)
- **backtracking** when resulting precedences in the plan form an inconsistent **Simple Temporal Network (STP)** [Meiri et al], or no other fix

The problem with POCL Planning (and Dynamic CSP!)

- POCL branching yields a **simple** and **elegant** algorithm for temporal planning; the problem is that it is just . . . **branching!**
- Pruning partial plans whose STP network is not consistent does not suffice to match performance of modern planners
- For this, it is crucial to **predict failures earlier**; the question is how to do it.
- The key part is to be able to reason with all possible actions, and not only those in current partial plan.
- This is indeed what Graphplan and SAT approaches do in non-temporal setting

(Similar problem in **Dynamic CSPs**; need to reason about all possible vars, not only those in 'current' CSP)

CPT: A CP-based POCL Planner

- Key novelty in CPT are the strong mechanisms for reasoning about all actions in the domain (start times, precedences, supports, etc), and not only those in current plan.
- This involves novel constraint-based **representation** and **propagation rules**, as in particular, an action can occur 0, 1, 2, or many times in the plan!
- CPT provides effective solution to the underlying **Dynamic CSP**

CPT: Formulation

- Variables
- Preprocessing
- Constraints
- Branching

Variables

For all actions in the domain $a \in O$ and preconditions $p \in Pre(a)$:

- $T(a) :: [0, \infty]$ = starting time of a
- $S(p,a) :: \{a' \in O | p \in Add(a')\}$ = support of p for a
- $T(p,a) :: [0,\infty]$ = starting time of support S(p,a)
- InPlan(a) :: [0,1] = presence of a in the plan

Preprocessing

- Initial lower bounds: $T_{min}(a) = h_T^2(a)$
- Structural mutexes: pairs of atoms p,q for which $h_T^2(\{p,q\}) = \infty$
- e-deleters: extended deletes computed from structural mutexes

• Distances:

- $dist(a, a') = h_T^1(a')$ with $I = I_a$
- $dist(Start, a) = h_T^2(a)$
- dist(a, End): shortest-path algorithm on a 'relevance graph'
- E-deleters and Distances used to make constraints tighter; $\delta(a', a) \stackrel{\text{def}}{=} duration(a') + dist(a', a)$

Constraints

• Bounds: for all $a \in O$

 $T(Start) + dist(Start, a) \le T(a)$

 $T(a) + dist(a, End) \le T(End)$

• **Preconditions:** supporter a' of precondition p of a must precede a:

$$T(a) \geq \min_{a' \in [D(S(p,a))]} [T(a') + \delta(a',a)]$$

$$T(a') + \delta(a', a) > T(a) \to S(p, a) \neq a'$$

• Causal Link Constraints: for all $a \in O$, $p \in pre(a)$ and a' that e-deletes p, a' precedes S(p, a) or follows a:

$$T(a') + dur(a') + \min_{a'' \in D[S(p,a)]} dist(a', a'') \le T(p, a) \quad \lor \quad T(a) + \delta(a, a') \le T(a')$$

Constraints (cont'd)

• Mutex Constraints: for effect-interfering a and a'

 $T(a) + \delta(a, a') \le T(a') \lor T(a') + \delta(a', a) \le T(a)$

• Support Constraints: T(p, a) and S(p, a) related by

$$S(p,a) = a' \to T(p,a) = T(a')$$

$$\min_{a' \in D[S(p,a)]} T(a') \leq T(p,a) \leq \max_{a' \in D[S(p,a)]} T(a')$$
$$T(p,a) \neq T(a') \rightarrow S(p,a) \neq a'$$

Branching

• A Support Threat $\langle a', S(p, a) \rangle$ generates the split

$$[T(a') + dur(a') + \min_{a'' \in D[S(p,a)]} dist(a', a'') \le T(p, a);$$

 $T(a) + \delta(a, a') \le T(a')]$

 \bullet An Open Condition ${\cal S}(p,a)$ generates the split

$$[S(p,a) = a'; S(p,a) \neq a']$$

• A Mutex Threat $\langle a, a' \rangle$ generates the split

 $[T(a) + \delta(a, a') \le T(a'); T(a') + \delta(a', a) \le T(a)]$

H. Geffner, Search and Inference in AI Planning, CP-05, 10/2005

Two subtle issues and their solutions in CPT

- 1. Conditional variables: variables associated with actions not yet included or excluded from current plan
 - propagate into those variables but never from them
 - domains meaningful under assumption that action eventually in plan
- 2. Action Types vs. Tokens: dealing with unknown number of tokens?
 - Variables associated with both action types and action tokens
 - Action tokens generated dynamically from action types by cloning
 - Action types summarize all tokens of same type not yet in plan
- -- 1 relevant for **Dynamic CSP:** need to reason about **all** potential vars and not only those in **'current'** CSP
- -- 2 relevant for certain **Symmetries**; e.g., hammers in box 'symmetrical' til one picked

Current Status of CPT

- 1. It currently appears as the best optimal temporal planner
- 2. Competitive with SAT **parallel** planners in the **special case** when action durations are uniform
- 3. Recent extension solves wide range of benchmark domains backtrackfree! (Blocks, Logistics, Satellite, Gripper, Miconic, Rovers, etc).
- 4. In such a case, **optimality** is not enforced (see Vincent presentation later today for details)

Summary

- Optimal planners (Graphplan, SAT, Heuristic Search) can all be understood as **branching** and **pruning**
- Big performance jump in last decade is the result of **pruning**; til Graphplan search was basically **blind**, although useful **branching** schemes
- Planning theories have **stratified** structure which is exploited in construction of **planning graph** and used by SAT approaches
- Temporal planning particularly suited for CP; CPT combines **POCL branching**, **lower bounds** obtained at preprocessing, and **pruning** based on CP formulation that reasons about **all actions in the domain**
- Some ideas in CPT potentially relevant for dealing with **Dynamic CSPs** and certain classes of **symmetries**