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Abstract
Classical planning has been notably successful in
synthesizing finite plans to achieve states where
propositional goals hold. In the last few years, clas-
sical planning has also been extended to incorpo-
rate temporally extended goals, expressed in tem-
poral logics such as LTL, to impose restrictions on
the state sequences generated by finite plans. In this
work, we take the next step and consider the com-
putation of infinite plans for achieving arbitrary
LTL goals. We show that infinite plans can also
be obtained efficiently by calling a classical plan-
ner once over a classical planning encoding that
represents and extends the composition of the plan-
ning domain and the Büchi automaton representing
the goal. This compilation scheme has been imple-
mented and a number of experiments are reported.

1 Motivation
Classical planning has been concerned with the synthesis of
finite plans to achieve final states where given propositional
goals hold. These are usually called “reachability” problems.
In the last few years temporally extended goals, expressed
in temporal logics such as LTL, have been increasingly used
to capture a richer class of finite plans, where restrictions
over the whole sequence of states must be satisfied as well
[Gerevini and Long, 2005]. A (temporally) extended goal
may state, for example, that any borrowed tool should be kept
clean until returning it; a constraint that does not apply to
states but, rather, to state sequences. Yet almost all work in
planning for LTL goals has been focused on finite plans [Bac-
chus and Kabanza, 1998; Cresswell and Coddington, 2004;
Edelkamp, 2006; Baier and McIlraith, 2006; Baier et al.,
2009], while general LTL goals may require infinite plans (see
[Bauer and Haslum, 2010]). For instance, in order to monitor
a set of rooms, an extended LTL goal may require the agent
to always return to each of the rooms, a goal that cannot be
achieved by a finite plan.

In this work, we take the next step in the integration of
LTL goals in planning and consider the computation of infi-
nite plans for achieving arbitrary LTL goals. It is well known
that such infinite plans can be finitely characterized as “las-
sos”: sequences of actions π1, mapping the initial state of a

composite system into some state s, followed by a second ac-
tion sequence π2 that maps s into itself, and that is repeated
infinitely often [Vardi, 1996]. The composite system is the
product of the planning domain and the Büchi automaton rep-
resenting the goal [De Giacomo and Vardi, 1999]. In this
paper we show that such infinite plans can efficiently be con-
structed by calling a classical planner once over a classical
planning problem Pϕ, which is obtained from the PDDL de-
scription P of the planning domain, and the Büchi automaton
Aϕ representing the goal ϕ.

The crux of our technique is a quite natural observation:
since we are looking for lasso sequences, when we reach an
accepting state of the Büchi automaton, we can nondetermin-
istically elect the current configuration formed by the state of
the automaton and the state of the domain as a “start looping”
configuration, and then try to reach the exact same configura-
tion a second time. If we do, we have found an accepting
automaton state that repeats infinitely often, satisfying the
Büchi condition, i.e., we have found the lasso. In this way
we reduce fair reachability (the lassos sequences) to plain
reachability (finite sequences). Such an observation has been
made already in the model-checking literature. In particular
[Schuppan and Biere, 2004] use this observation to reduce
checking of liveness properties (“something good eventually
happens”), and, more generally, arbitrary LTL formulas via
Büchi automata nonemptiness, to checking of safety proper-
ties (“something bad never happens”).

Planning technologies have been used before for tackling
LTL goals, starting with the pioneer work by Edelkamp
[2003]. Also, an earlier computational model for planning
with arbitrary LTL goals was developed in [Kabanza and
Thiébaux, 2005], where no direct translation into classical
planning was present, but a classical planner was invoked to
solve a series of subproblems, inside a backtracking search.
Strictly related to our approach is the work reported in Al-
barghouthi, Baier, and McIlraith [2009], where the authors
map the model-checking problem over deterministic and non-
deterministic transition systems into classical planning prob-
lems. They directly exploit the reduction schema devised
in [Schuppan and Biere, 2004] to handle the Büchi accep-
tance condition with the generality required by arbitrary LTL
formulas, while adopting specific techniques for safety and
liveness properties, demonstrated by promising experiments
over the Philosophers domain.



Here we propose instead a direct translation of LTL goals
(or better arbitrary Büchi automata goals) into classical plan-
ning specifically well cut to exploit state-of-the art planners
capabilities, and test it over a variety of domains and goals.

The paper is organized as follows. First, we review the
background material: planning domains, LTL, and Büchi
automata (Section 2), and the definition of the problem of
achieving arbitrary LTL goals ϕ over planning domains P
(Section 3). We then map this problem into the classical plan-
ning problem Pϕ (Section 4) and test the compilation over
various domains and goals (Section 5).

2 Preliminaries
We review the models associated with classical planning,
LTL, and Büchi automata.

2.1 Planning Domains
A (classical) planning domain is a tuple D =
(Act ,Prop, S, s0, f) where: (i) Act is the finite set of
domain actions; (ii) Prop is the set of domain propositions;
(iii) S ⊆ 2Prop is the set of domain states; (iv) s0 ∈ S is
the initial state of the domain; and (v) f : A × S → S is a
(partial) state transition function.

Planning languages such as STRIPS or ADL, all accom-
modated in the PDDL standard, are commonly used to spec-
ify the states and transitions in compact form.

A trace on a planning domain is a possibly infinite se-
quence of states s0, s1, s2, . . . where si+1 = f(si, a) for
some a ∈ Act s.t. f(si, a) 6= ⊥. A goal is a specification
of the desired traces onD. In particular, classical reachability
goals, which require reaching a state s where a certain propo-
sitional formula ϕ over Prop holds, are expressed as selecting
all those finite traces t = s0s1 · · · sn, such that sn |= ϕ. Us-
ing infinite traces allows us to consider a richer set of goals,
suitably expressed through arbitrary LTL formulas.

2.2 Linear Temporal Logic (LTL)
LTL was originally proposed as a specification language for
concurrent programs [Pnueli, 1977]. Formulas of LTL are
built from a set Prop of propositional symbols and are closed
under the boolean operators, the unary temporal operators ◦,
3, and 2, and the binary temporal operator U .1 Intuitively,
◦ϕ says that ϕ holds at the next instant, 3ϕ says that ϕ will
eventually hold at some future instant, 2ϕ says that from the
current instant on ϕ will always hold, and ϕU ψ says that at
some future instant ψ will hold and until that point ϕ holds.
We also use the standard boolean connectives ∨, ∧, and→.

The semantics of LTL is given in terms of interpretations
over a linear structure. For simplicity, we use IN as the linear
structure: for an instant i ∈ IN, the successive instant is i+ 1.
An interpretation is a function π : IN → 2Prop assigning to
each element of Prop a truth value at each instant i ∈ IN.
For an interpretation π, we inductively define when an LTL
formula ϕ is true at an instant i ∈ IN (written π, i |= ϕ):

• π, i |= p, for p ∈ Prop iff p ∈ π(i).
• π, i |= ¬ϕ iff not π, i |= ϕ.

1In fact, all operators can be defined in terms of ◦ and U .

• π, i |= ϕ ∧ ϕ′ iff π, i |= ϕ and π, i |= ϕ′.
• π, i |= ◦ϕ iff π, i+1 |= ϕ.
• π, i |= ϕU ϕ′ iff for some j ≥ i, we have that π, j |=
ϕ′ and for all k, i ≤ k < j, we have that π, k |= ϕ.

A formula ϕ is true in π (written π |= ϕ) if π, 0 |= ϕ. Given
a planning domain (or more generally a transition system), its
traces s0, s1, s2, . . . can be seen as LTL interpretations π such
that π, i |= p iff si |= p.

2.3 LTL and Büchi Automata
There is a tight relation between LTL and Büchi automata
on infinite words, see e.g., [Vardi, 1996]. A Büchi au-
tomaton (on infinite words) [Thomas, 1990] is a tuple A =
(Σ, Q,Q0, ρ, F ) where: (i) Σ is the input alphabet of the
automaton; (ii) Q is the finite set of automaton states; (iii)
Q0 ⊆ Q is the set of initial states of the automaton; (iv)
ρ : Q × Σ → 2Q is the automaton transition function (the
automaton does not need to be deterministic); and (v) F ⊆ Q
is the set of accepting states. The input words of A are infi-
nite words σ0σ1 · · · ∈ Σω . A run of A on an infinite word
σ0σ1 · · · is an infinite sequence of states q0q1 · · · ∈ Qω s.t.
q0 ∈ Q0 and qi+1 ∈ ρ(qi, σi). A run r is accepting iff
lim(r) ∩ F 6= ∅, where lim(r) is the set of states that oc-
cur in r infinitely often. In other words, a run is accepting if
it gets into F infinitely many times, which means, being F
finite, that there is at least one state qf ∈ F visited infinitely
often. The language accepted by A, denoted by L(A), is the
set of (infinite) words for which there is an accepting run.

The nonemptiness problem for an automaton A is to de-
cide whether L(A) 6= ∅, i.e., whether the automaton accepts
at least one word. The problem is NLOGSPACE-complete
[Vardi and Wolper, 1994], and the nonemptiness algorithm
in [Vardi and Wolper, 1994] actually returns a witness for
nonemptiness, which is a finite prefix followed by a cycle.

The relevance of the nonemptiness problem for LTL fol-
lows from the correspondence obtained by setting the au-
tomaton alphabet to the propositional interpretations, i.e.,
Σ = 2Prop . Then, an infinite word over the alphabet 2Prop

represents an interpretation of an LTL formula over Prop.

Theorem 1 [Vardi and Wolper, 1994] For every LTL formula
ϕ one can effectively construct a Büchi automaton Aϕ whose
number of states is at most exponential in the length of ϕ and
such that L(Aϕ) is the set of models of ϕ.

Typically, formulas are used to compactly represent sub-
sets of Σ = 2Prop. We extend the transition function of
a Büchi automaton to propositional formulas over Prop as:
ρ(q,W )

.
= {q′ | ∃s s.t. s |= W ∧ q′ ∈ ρ(q, s)}.

3 The Problem
A plan π over a planning domain D = (Act ,Prop, S, s0, f)
is an infinite sequence of actions a0, a1, a2, . . . ∈ Actω .
The trace of π (starting from the initial state s0) is the in-
finite sequence of states tr(π, s0) = s0, s1, . . . ∈ Sω s.t.
si+1 = f(si, ai) (and hence f(si, a) 6= ⊥). A plan π
achieves an LTL formula ϕ iff tr(π, s0) ∈ L(Aϕ), where
Aϕ = (2Prop, Q,Q0, ρ, F ) is the automaton that accepts ex-
actly the interpretations that satisfy ϕ.



How can we synthesize such a plan? We can
check for nonemptiness the Büchi automaton AD,ϕ =
(ΣD, QD, QD0, ρD, FD) that represents the product between
the domain D and the automaton Aϕ, where: (i) ΣD = Act ;
(ii) QD = Q × S; (iii) QD0 = Q0 × {s0}; (iv) (qj , sj) ∈
ρD((qi, si), a) iff sj = f(si, a) and qj ∈ ρ(qi,W ), with
si |= W ; and (v) FD = F × S. It can be shown that the
above construction is sound and complete:
Theorem 2 [De Giacomo and Vardi, 1999] A plan π for the
planning domainD achieves the LTL goal ϕ iff π ∈ L(AD,ϕ)
for the automaton AD,ϕ.

It is also easy to see that if a plan π is accepted by the Büchi
automaton AD,ϕ, and hence π achieves the LTL goal ϕ over
D, then π can be seen as forming a lasso, namely: an action
sequence π1 followed by a loop involving an action sequence
π2. This is because π must generate a run over the automaton
AD,ϕ that includes some accepting state (qi, si) an infinite
number of times. It follows from this that:
Theorem 3 The goal ϕ is achievable in a planning domain
D iff there is a plan π made up of an action sequence π1 fol-
lowed by the action sequence π2 repeated an infinite number
of times, such that π achieves ϕ in D.

4 Compilation Into Classical Planning
Theorem 3 says that the plans to achieve an arbitrary LTL goal
have all the same form: a sequence π1 mapping the initial
state of the product automaton AD,ϕ into an accepting state,
followed by another sequence π2 that maps this state into it-
self, that is repeated for ever. This observation is a direct
consequence of well known results. What we want to do now
is to take advantage of the factored representation P of the
planning domainD afforded by standard planning languages,
for transforming the problem of finding the sequences π1 and
π2 for an arbitrary LTL goal ϕ, into the problem of finding
a standard finite plan for a classical problem Pϕ, where Pϕ

is obtained from P and the automaton Aϕ (that accepts the
interpretations that satisfy ϕ). Such classical plans, that can
be obtained using an off-the-shelf classical planner, will all
have the form π′1, loop(q), π

′
2, where π′1 and π′2 are the ac-

tion sequences π1 and π2 extended with auxiliary actions,
and loop(q) is an auxiliary action to be executed exactly once
in any plan for Pϕ, with q representing an accepting state
of Aϕ. The loop(q) action marks the current state over the
problem Pϕ, as the first state of the lasso. This is accom-
plished by making the loop(q) action dynamically set the goal
of the problem Pϕ to the pair (q, s) (extended with a suitable
boolean flag) if s represents the state of the literals over Prop
when the loop(q) was done. That is, the action sequence π′2
that follows the loop(q) action, starts with the fluents encod-
ing the state (q, s) true, and ends when these fluents have been
true once again, thus capturing the loop.

The basis of the classical planning problem Pϕ is the in-
termediate description P ′, an encoding that captures sim-
ple reachability in the product automaton AD. If P =
〈Prop, s0, Act〉 is the PDDL description of the planning do-
main, andAϕ = 〈2Prop, Q,Q0, ρ, F 〉 is the Büchi automaton
accepting the interpretations that satisfy ϕ, then P ′ is the tu-
ple 〈Prop′, s′0, Act′〉 where:

• Prop′ = Prop ∪ {pq, nq | q ∈ Q} ∪ {f0, f1, f2},
• s′0 = s0 ∪ {pq | q ∈ Q0} ∪ {f1},
• Act′ = Act ∪ {mv1,mv2},

where the actions in Act′ that come from P , i.e. those in
Act, have the literal f0 as an extra precondition, and the lit-
erals ¬f0 and f1 as extra effects. The booleans fi are flags
that force infinite plans a0, a1, a2, . . . in P ′ to be s.t. a0 is an
action from P , and if ai is an action from P , ai+1 = mv1,
ai+2 = mv2, and ai+3 is an action from P again. That is,
plans for P ′ are made of sequences of three actions, the first
from P , followed bymv1 andmv2. For this,mv1 has precon-
dition f1 and effects f2 and ¬f1, and mv2 has precondition
f2 and effects f0 and ¬f2.

The actions mv1 and mv2 keep track of the fluents pq that
encode the states q of the automaton Aϕ. Basically, if state q′
may follow q upon input formula W in Aϕ, then action mv1
will have the conditional effects

W ∧ pq → nq′ ∧ ¬pq
and mv2 will have the conditional effects

nq → pq ∧ ¬nq
for all the states q in Aϕ. So that if pq and W are true right
beforemv1, then pq′ will be true after the sequencemv1,mv2
iff q′ ∈ ρ(q,W ) for the transition function ρ of Aϕ. It can be
shown then that:

Theorem 4 Let P = 〈Prop, s0, Act〉 be the PDDL
description of the planning domain D, and Aϕ =
〈2Prop, Q,Q0, ρ, F 〉 be the Büchi automaton accepting
the interpretations that satisfy ϕ. The sequence π =
a0, a1, a2, . . . , ai∗3+2 non-deterministically leads the prod-
uct automaton AD,ϕ to the state (q, s) iff in the planning do-
main description P ′, π achieves the literal pq and the literals
L over Prop iff L is true in s.

P ′ thus captures simple reachability in the automaton AD
that is the product of the planning domain described by P
and the automaton Aϕ representing the goal ϕ. The classical
planning problem Pϕ that captures the plans for ϕ over P
is defined as an extension of P ′. The extension enforces a
correspondence between the ‘loopy’ plans π for ϕ over P
of the form ‘π1 followed by loop π2’, and the finite plans
for the classical problem Pϕ of the form ‘π′1, loop(q), π

′
2’,

where π1 and π2 are the action sequences before and after
the loop(q) action with the auxiliary actions removed. The
encoding Pϕ achieves this correspondence by including in the
goal the literal pq encoding the state q of the Aϕ as well as
all the literals L over Prop that were true when the action
loop(q) was done. This is accomplished by making a copy
of the latter literals in the atoms req(L). More precisely, if
P = 〈Prop, s0, Act〉 and P ′ = 〈Prop′, s′0, Act′〉, Pϕ is the
tuple P ′′ = 〈Prop′′, s′′0 , Act′′, Goal′′〉 where:

• Prop′′ = Prop′ ∪ {req(L) |L ∈ Prop} ∪ {Ls, Lf}
• s′′0 = s′0

• Act′′ = Act′ ∪ {loop(q) | q ∈ F}
• G′′ = {Lf} ∪ {L ≡ req(L) |L ∈ Prop}.



Here L ∈ Prop refers to the literals defined over the Prop
variables, and the new fluents req(L), Ls, and Lf stand for
‘L required to be true at the end of the loop’, ‘loop started’,
and ‘loop possibly finished’ respectively. In addition, the new
loop(q) actions have preconditions pq , f0, ¬Ls, and effects
Ls and

L→ req(L)

for all literals L over Prop, along with the effects pq → ¬pq′
for all the automaton states q′ different than q. The effects
L → req(L) ‘copy’ the literals L that are true when the ac-
tion loop(q) was done, into the atoms req(L) that cannot be
changed again. As a result, the goals L ≡ req(L) in G′′ cap-
ture the equivalence between the truth value of L when the
loop(q) action was done, and when the goal state of Pϕ is
achieved.

The effects pq → ¬pq′ , on the other hand, express a com-
mitment to the automaton state q associated with the loop(q)
action, setting the fluents representing all other states q′ to
false. In addition, all the non-auxiliary actions in Act′′,
namely those from P , are extended with the effect Ls→ Lf
that along with the goal Lf ensures that some action from
P must be done as part of the loop. Without the Lf fluent
(’loop possibly finished’) in the goal and these conditional
effects, the plans for Pϕ would finish right after the loop(q)
action without capturing a true loop.

From the goal G′′ above that includes both Lf and

L ≡ req(L)

for all literals L over Prop, this all means that a loop(q)
action must be done in any plan for Pϕ, after an initial ac-
tion sequence π′1, and before a second action sequence π′2
containing an action from Act. The sequence π′2 closes the
‘lasso’; namely, it reproduces the state of the product automa-
ton where the action loop(q) was done.2

Theorem 5 (Main) π is a plan for the LTL goal ϕ over the
planning domain described by P iff π is of the form ‘π1 fol-
lowed by the loop π2’, where π1 and π2 are the action se-
quences from P , before and after the loop(q) action in any
classical plan for Pϕ.

5 Use of the Classical Planner
Theorem 5 states that the plans for an arbitrary LTL goal ϕ
over a domain description P can be obtained from the plans
for the classical planning problem Pϕ. The goal of Pϕ is a
classical goal that includes the literalLf and the equivalences
L ≡ req(L) for L ∈ Prop. Classical planners usually deal
with precondition, conditions, and goals that are conjunctions
of literals, eliminating other formulas. For this, they apply
standard transformations as a preprocessing step [Gazen and
Knoblock, 1997]. In our use of planners, we have found use-
ful to compile the equivalences L ≡ req(L) away from the

2The theorem below doesn’t require the presence of a NO-OP
action in P , yet many LTL goals require such an action (e.g., the
goal ‘eventually always hold block A’). Also, the finite plans π that
can be used to achieve some type of LTL goals (e.g., ‘eventually hold
block A’), map then into the infinite plans where π is followed by a
NO-OP loop.

goal by including extra actions and fluents. In particular, a
new action End? is introduced that can be applied at most
once as the last action of a plan (this is managed by an extra
boolean flag). The precondition of End? is Lf and its effects
are

L, req(L)→ end(L)

over all L over Prop, where end(L) are new atoms. It is easy
to see that π is a classical plan for the original encoding Pϕ

iff π followed by the End? action is a classical plan in the
revised encoding where the equivalences L ≡ req(L) in the
goal have been replaced by the atoms end(L). This transfor-
mation is general and planner independent.

The second transformation that we have found useful to
improve performance involves changes in the planner itself.
We made three changes in the state-of-the-art FF planner
[Hoffmann and Nebel, 2001] so that the sequences made up
of a normal domain action followed by the auxiliary actions
mv1 andmv2, that are part of all plans for the compiled prob-
lems Pϕ, are executed as if the 3-action sequence was just one
“primitive” action. For this, every time a normal action a is
applied in the search, the whole sequence a,mv1,mv2 is ap-
plied instead. In addition, the two auxiliary actions mv1 and
mv2 that are used to capture the ramifications of the normal
actions over the Büchi automata, are not counted in the eval-
uation of the heuristic (that counts the number of actions in
the relaxed plans), and the precondition flag f1 of the action
mv1 appearing in the relaxed plans is not taken into account
in the identification of the “helpful actions”, as all the actions
applicable when f1 is false and f0 is true, add f1 Finally, we
have found critical to disable the goal agenda mechanism, as
the compiled problems contain too many goals: as many as
literals. Without these changes FF runs much slower over
the compiled problems. In principle, these problems could
be avoided with planners able to deal properly with “action
macros” or “ramifications”, but we have found such planners
to be less robust than FF.

6 Experiments
Let us describe through a sample domain what LTL goals can
actually capture. In this domain, a robotic ‘animat’ lives on
a n × n grid, whose cells may host a food station, a drink
station, the animat’s lair, and the animat’s (beloved) partner.
In our instances the partner is at the lair. The animat status
is described in terms of levels of power (p), hunger (h), and
thirst (t). The animat can move one cell up, down, right,
and left, can drink (resp. eat), when in a drink (food) sta-
tion, and can sleep, when at the lair. Each action affects
(p, h, t), as follows: move:(−1,+1,+1), drink:(−1,+1, 0),
eat:(−1, 0,+1), and sleep:(max,+1,+1). The value max
is a parameter adjusted depending on the grid size n. Initially,
(p, h, t) = (max, 0, 0).

The objective of the animat is not to reach a particular goal
as in classical planning but to carry on a happy life. The
animat is happy if it is not (too) hungry, thirsty or weak,
and, importantly, if it can get back to its lair and see its
partner, every now and then, and do something different
as well. Its life is happy if this condition is always veri-
fied. Formally, animat’s happiness is expressed by the fol-



Instance Total time Plan Length
animat 3x3 30.96 76
animat 4x4 133.87 85
animat 5x5 948.87 115

animat 6x6,7x7,8x8,9x9 > 1079.73 (Out of mem)

Table 1: Results for animat domain. Times in seconds. Plan length
includes aux. actions (effective length is 1/3 approx.).

lowing LTL formula: 2((h 6= max) ∧ (t 6= max) ∧ (p 6=
0))∧23(with partner)∧23(¬with partner), which re-
quires an infinite plan such that: (i) h, t and p are guaranteed
to never reach their max/min values; (ii) the animat visits its
partner infinitely often; and (iii) the animat does something
else than visiting its partner infinitely often.

As a first set of experiments3, we tested the performance
of FF (with the modifications previously discussed) in solv-
ing animat instances. Specifically, we increased the grid size
from 3 to 9, and max from 15 (for n = 3) to 27 (for n = 9),
adding 2 units each time n was increased by 1. As for the
goal formula, we used exactly the same as seen above, by just
setting the value of max depending on n. This problem is
challenging for FF because it requires building a non-trivial
lasso for which the EHC search fails. In Table 1 we show
the results, with times expressed in seconds, and plan lengths
including the auxiliary actions (number of domain actions is
approx. 1/3). In this domain, the failure of the more focused
EHC triggers a greedy best first search that runs out of mem-
ory over the largest domains. Still, this search produces non-
trivial working ‘loopy’ plans, including almost 40 actions in
the largest instance solved.

We carried out two additional classes of experiments on
standard planning domains. In the first class, we test the
overhead of the translation for purely classical problems, and
hence reachability goals, with the NO-OP action added. For
this we compare the performance of FF over the classical
planning problems P ′ with goal G with the performance of
FF over the translation Pϕ where P is P ′ but with the goal G
removed, and ϕ is the LTL formula 3G. Results are shown
in Table 2. As it can be seen from the table, there is a per-
formance penalty that comes in part from the extra number
of actions and fluents in the compiled problems (columns OP
and FL). Still, the number of nodes expanded in the compiled
problems remains close to that of nodes expanded in the orig-
inal problems, and while times are higher, coverage over the
set of instances does not change significantly (columns S).
The scalability of FF over classical problems vs. their equiv-
alent compiled LTL problems is shown in Fig. 1 for Gripper,
as the number of balls is increased. While the times grow
for the latter, the degradation appears to be polynomial as the
number of expanded nodes is roughly preserved.

In the second class, we tested our approach on three clas-
sical problems (Blocksworld, Gripper and Logistics) using
more complex LTL goals. Such experiments aim at evaluat-
ing the effectiveness of our approach wrt the general problem
of finding infinite plans that satisfy generic LTL goals. We

3Experiments run on a dual-processor Xeon ’Woodcrest’, 2.66
GHz CPU, 8 GB of RAM, with a process timeout of 30 minutes and
memory limit of 2 GB).
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Figure 1: FF scalability over classical vs. LTL Gripper encodings
(X-axis: #of balls. Y-axis: times in sec.). While the times grow for
the LTL version, the degradation is polynomial.

Domain I S E AT OP FL
Blocks+LTL 50 31 141,573 72.84 4.5 5.4

Blocks 50 34 81,832 5.26
Logistics+LTL 28 28 97 0.21 4.2 6.0

Logistics 28 28 94 0.07
Satellite+LTL 20 20 103 0.45 2.3 8.0

Satellite 20 20 95 0.02
TPP+LTL 30 24 21,513 123.27 2.5 7.1

TPP 30 30 15,694 8.19
Grid+LTL 5 3 208 2.15 3.0 13.0

Grid 5 5 81 0.03
Gripper+LTL 50 50 130 0.15 4.1 5.2

Gripper 50 50 102 0.06

Table 2: Comparison between FF solving classical planning prob-
lems and FF solving the same problems stated as LTL reachability.
Columns show domain name (+LTL for LTL version), # of instances
(I), # of solved instances (S), av. # of expanded nodes (E), av. sol.
time in sec (AT), av. factor of operators wrt classical (OPS), av.
factor of fluents wrt classical (OPS). Times in seconds.

used five different classes of LTL formulas as goals:
• (Type 1)

∧n

i=1
3pi;

• (Type 2) 3(p1 ∧◦3(p2 ∧ . . . ∧◦3(pn) . . .));

• (Type 3)
∧n

i=1
23pi;

• (Type 4) (. . . (p1 U p2)U . . .)U pn;

• (Type 5) (23p1 → 23p2) ∧ . . . ∧ (23pn−1 → 23pn).

Types 1, 3 and 4, appear among those proposed in [Rozier and
Vardi, 2010] for model-checkers’ performance comparison;
type 2 is a type-1 variant, which forces the planner to plan for
sequential goals; and type 5 formulas are built from strong
fairness formulas 23p→ 23q, so as to generate large Büchi
automata.

For all domains and classes of formulas above, we gener-
ated a set of instances, obtained by increasing several param-
eters. For Blocksworld, we increased the number of blocks,
for Gripper the number of balls, and for Logistics the number
of packages, airplanes and locations within each city, fixing
the number of cities to 4. In addition to these, for each prob-
lem, we increased the LTL formula length, i.e., the number of
boolean subformulas occurring in the LTL formula. Then, we
compiled such instances into classical planning problems, ac-
cording to the schema above, and solved them using FF. The
results are shown in Table 3.

We tried to solve these collections of instances using the
well-known symbolic model checker NuSMV [Cimatti et al.,
2002], so as to compare our approach with a state-of-the-art
model checker [Rozier and Vardi, 2010]. In order to do so,



COMPIL. SOL. (FF)
Domain I C ACT S NS AST TAT

Blocks+LTL1 100 90 0.33 80 0 9.69 10.01
Blocks+LTL2 100 90 0.00 85 0 12.40 12.40
Blocks+LTL3 100 90 28.15 68 0 16.83 44.97
Blocks+LTL4 100 87 13.45 14 51 0.46 13.91
Blocks+LTL5 100 80 83.22 59 10 0.57 83.79

Logistics+LTL1 243 243 0.02 242 0 0.61 0.63
Logistics+LTL2 243 243 0.04 241 0 18.45 18.49
Logistics+LTL3 243 243 0.23 99 0 119.09 119.32
Logistics+LTL4 243 243 1.85 151 48 29.68 31.53
Logistics+LTL5 243 243 55.83 180 0 123.85 179.68
Gripper+LTL1 100 100 0.45 80 0 0.45 0.91
Gripper+LTL2 100 100 0.00 100 0 0.13 0.13
Gripper+LTL3 100 100 75.61 100 0 0.13 75.73
Gripper+LTL4 100 90 14.93 60 0 1.08 16.01
Gripper+LTL5 100 80 156.72 60 0 0.67 157.39

Table 3: Results for FF over compilations Pϕ for different domains
P and LTL goals ϕ. Columns show domain and class of LTL for-
mula, # of instances (I), # of instances compiled successfully (C),
avg. compilation time (ACT), # of solved instances (S), # of in-
stances found unsolvable (NS), avg. solution time (AST), and avg.
compilation+solution times (TAT).

we translated the LTL goals (before compilation into classical
planning) into LTL model-checking ones, using a very natu-
ral schema, where ground predicates are mapped into boolean
variables, and ground actions act as values for a variable. The
model checker, however, runs out of memory on even the sim-
plest instances of Blocksworld and Logistics with classical
goals, and on most of the Gripper instances, and had even
more problems when non-classical goals were used instead.
The sheer size of these problems appears thus to pose a much
larger challenge to model checkers than to classical planners.

7 Conclusion
We have introduced a general scheme for compiling away
arbitrary LTL goals in planning, and have tested it empiri-
cally over a number of domains and goals. The transforma-
tion allows us to obtain infinite ‘loopy’ plans for an extended
goal ϕ over a domain description P , from the finite plans
that can be obtained with any classical planner from a prob-
lem Pϕ. The result is relevant to both planning and model-
checking: to planning, because it enables classical planners
to produce a richer class of plans for a richer class of goals; to
model-checking, because it enables the use of classical plan-
ning to model-check arbitrary LTL formulas over determinis-
tic and non-deterministic domains. We have experimentally
shown indeed that state-of-the-art model-checkers do not ap-
pear to scale up remotely as well as state-of-the-art planners
that search with automatically derived heuristics and help-
ful actions. In the future, we want to test the use of the Pϕ

translation for model-checking rather than planning, and ex-
tend these ideas to planning settings where actions have non-
deterministic effects, taking advantage of recent translations
developed for conformant and contingent problems.
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[Kabanza and Thiébaux, 2005] F. Kabanza and S. Thiébaux.
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