
Search and Inference in AI Planning

Héctor Geffner

ICREA & Universitat Pompeu Fabra
Paseo de Circunvalacion 8
08003 Barcelona, Spain

hector.geffner@upf.edu

Abstract. While Planning has been a key area in Artificial Intelligence
since its beginnings, significant changes have occurred in the last decade
as a result of new ideas and a more established empirical methodology. In
this invited talk, I will focus on Optimal Planning where these new ideas
can be understood along two dimensions: branching and pruning. Both
heuristic search planners, and SAT and CSP planners can be understood
in this way, with the latter branching on variables and pruning by con-
straint propagation, and the former branching on actions and pruning
by lower bound estimations. The two formulations, however, have a lot
in common, and some key planners such as Graphplan can be under-
stood in either way: as computing a lower bound function and searching
backwards from the goal, or as performing a precise, bounded form of
variable elimination, followed by backtracking. The main limitation of
older, so-called Partial Ordered Causal Link (POCL) planners, is that
they provide smart branching schemes, in particular for temporal plan-
ning, but weak pruning rules. Indeed, the computation and even the
formulation of good lower bounds for POCL plans is far from trivial.
However, the pruning that cannot be obtained by the use of good mono-
lithic lower bounds, can often be achieved by simple propagation rules
over a suitable constraint-based formulation. We show this to be the case
for CPT, currently the best domain-independent temporal planner, and
then explore briefly further branching and pruning variations in parallel
and conformant planning.

1 Introduction

AI Planning studies languages, models, and algorithms for describing and solv-
ing problems that involve the selection of actions for achieving goals. Most work
so far has been devoted to classical planning where actions are deterministic,
and plans are sequences of actions mapping a fully known initial situation into a
goal. Other variants considered, however, are temporal planning, where actions
have durations and some can be executed concurrently, and contingent and con-
formant planning, where actions are not deterministic, and their effects may or
may not be observable. In each case, the form and semantics of plans can be
defined precisely [1], the key problem is computational: how to search for plans
effectively given a compact description of the task (e.g., in Strips).



2 Branching and Pruning: Heuristic Search and SAT

The search for optimal plans, like the search for optimal solutions in many in-
tractable combinatorial problems, can be understood in terms of branching and
pruning. Both Heuristic Search and SAT (and CSP) approaches in planning can
be understood in this way; the former branches on actions and prunes by ex-
tracting and using lower bounds [2], the latter, branches on variables and prunes
by constraint propagation and consistency checking [3]. The two approaches
for taming the search, however, are closely related, and indeed, current SAT
approaches [4] work on the encoding extracted from the planning graph [5]: a
structure that can be interpreted as representing both a heuristic function and
a precompiled theory.

Simplifying a bit, the planning graph can be thought as a sequence of layers
P0, A0, P1, . . . A1, . . . such that each layer Pi contains facts and each layer Ai

contains actions. If computed in a state s, the facts in the first layer P0 are the
ones that are true in s, while then, iteratively, the actions in layer Ai are the ones
whose preconditions are in Pi, and the facts in layer Pi+1 are the ones added
by actions in Ai (for this construction, no-op actions are assumed for each fact
p with pre and postcondition p; see [5]). This is actually the relaxed planning
graph also called the reachability graph, a simplification of the graph computed
by Graphplan that ignores the so-called mutex information.

It is easy to show in either case that the heuristic function h(s) = i where
i is the index of the first layer Pi that contains the goals is a lower bound
on the number of actions that are needed for achieving the goals from s. A
generalized formulation of this class of lower bounds is given in [2], where a
family of admissible heuristic functions hm(s) for a fixed integer m = 1, 2, . . .
are defined that recursively approximate the cost of achieving a set of atoms
C by the cost of the achieving the most costly subset of size m in C. Relaxed
reachability corresponds to hm with m = 1, while mutex reachability corresponds
to hm with m = 2.

From a logical perspective, if L0, L1, L2, . . . , refer to the collections of fact
variables at time 0, action variables at time 0, fact variables at time 1, and so on,
it is easy to verify that all the clauses in planning theories involve variables in
the same layer Li, or variables in adjacent layers. The stratified nature of these
theories suggests a stratified form of inference: starting with the set of clauses
Γi in the first layer Li for i = 0, iteratively compute the sets of consequences
Γi+1 = Ci+1(Γi ∪ Ti,i+1) over the next layer Li+1, for i = 0, 1, . . ., using Γi and
the clauses Ti,i+1 that involve variables in both layers. If Ci+1(X) is defined as
the set of prime implicates of size no greater than m in Li+1 that follow from
X, then the derived clauses turn out to be in correspondence with the clauses
obtained from the planning graph: m = 1 yields a correspondence with the
relaxed planning graph, while m = 2 yields a correspondence with the planning
graph with pairwise mutexes. This inference is polynomial in the context of
planning theories, where it corresponds precisely to a form of bounded form
of variable elimination [6], where variables are eliminated in blocks inducing
constraints of size no greater than m; see [7] for details.



3 Branching and Pruning in POCL Planning

Partial Order Planners were common in AI during the 80’s and early 90’s but
could not compete with Graphplan and successors in terms of performance [5].
The reason being that POP planners, and in particular Partial Order Causal
Link (POCL) planners [8], provide a branching scheme particularly suited for
temporal planning [9], but no comparable pruning mechanisms. This limitation
has been addressed recently in [10], where an optimal temporal planner that
combines a POCL branching scheme with strong pruning mechanisms has been
formulated in terms of constraints. The key element that distinguishes this plan-
ner, called CPT, from previous constraint-based POCL planners is the ability
to reason about all actions in the domain and not only the actions in the cur-
rent plan. The latter planners do not infer anything about an action until it is
included in the plan, and something similar occurs in the standard methods for
solving Dynamic CSPs. Yet often a lot can be inferred about such actions even
before any commitments are made; the lower bounds on the starting times of
all actions as computed in the planning graph being one example. In order to
perform these and other inferences, CPT represents and reasons with a set of
variables associated with all the actions in the domain. By means of a suitable
set of constraints, propagation rules, and preprocessing, CPT has been shown to
be the top performing optimal temporal planner, approching the performance of
the best SAT planners in the special case in which all actions have unit duration
[10].

The inference capabilities of CPT are illustrated in [10] by means of a sim-
ple tower-n domain, where n blocks b1, . . . , bn that are initially on the table,
need to be stacked in order with b1 on top. This is trivial problem for peo-
ple but not for an optimal domain-independent planner that fails to recognize
the structure of the problem. Indeed, none of the optimal planners considered,
including Graphplan, SAT, and Heuristic Search planners can solve instances
larger than n = 15. CPT, on the other hand, solves these and larger instances,
in a few seconds by pure (polynomial) inference and no search. Actually, in [11],
it is shown that many of the standard benchmarks used in planning, including
all instances of Blocks, Ferry, Logistics, Gripper, Miconic, Rovers and Satellite,
are solved backtrack free by an extension of CPT that performs further but still
polynomial inference in every node.

4 Further Variations on Branching and Pruning

Graphplan computes the planning graph once from the initial situation and then
searches the planning graph backwards for a plan. In [12], an alternative branch-
ing scheme is considered based on forcing a selected action in or out of the plan
at a given time. The planning graph is then recomputed in every node in a way
compatible with the commitments made, and a node is pruned when its planning
graph pushes the goal beyond planning horizon. It is then shown that this al-
ternative branching scheme, that preserves the same lower bound mechanism as



Graphplan (the planning graph), does much better than Graphplan when many
actions can be done in parallel. In [13], the same branching scheme is used for
conformant planning where the plan must work for a number of possible initial
states (the initial state is partially unknown). Then partial conformant plans
are pruned when they become incompatible with the plan for some initial state.
This is determined by model-count operations that are rendered efficient by a
precompilation of the planning theory into a suitable logical form [14].

Clearly, branching and pruning go a long way in optimal problem solving, yet
it is not all branching and pruning. Two other ideas that have been shown to be
important as well in problem solving are Learning in both CSP/SAT [15] and
State Models [16], and Decomposition [14, 17], in particular in problems that are
harder than SAT.

Acknowledgments: Many of the ideas in CPT as well as all the code are due to
Vincent Vidal. My work is supported in part by Grant TIC2002-04470-C03-02,
MCyT, Spain.

References

1. Geffner, H.: Perspectives on AI Planning. In: Proc. AAAI-02. 1013–1023
2. Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In: Proc.

AIPS-00. 70–82
3. Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and

stochastic search. In: Proc. AAAI-96, 1194–1201
4. Kautz, H., Selman, B.: Unifying SAT-based and Graph-based planning. In Proc.

IJCAI-99, (1999) 318–327
5. Blum, A., Furst, M.: Fast planning through planning graph analysis. In: Proceed-

ings of IJCAI-95, Morgan Kaufmann (1995) 1636–1642
6. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial

Intelligence 113 (1999) 41–85
7. Geffner, H.: Planning graphs and knowledge compilation. In: Proc. KR-04. 662–672
8. Weld, D.S.: An introduction to least commitment planning. AI Magazine 15 (1994)
9. Smith, D., Frank, J., Jonsson, A.: Bridging the gap between planning and schedul-

ing. Knowledge Engineering Review 15 (2000) 61–94
10. Vidal, V., Geffner, H.: Branching and pruning: An optimal temporal POCL planner

based on constraint programming. In: Proc. AAAI-04. (2004) 570–577
11. Vidal, V., Geffner, H.: Solving simple planning problems with more inference and

no search. In: Proc. CP-05. (2005)
12. Hoffmann, J., Geffner, H.: Branching matters: Alternative branching in graphplan.

In: Proc. ICAPS-2003. (2003) 22–31
13. Palacios, H., Bonet, B., Darwiche, A., Geffner, H.: Pruning conformant plans by

counting models on compiled d-DNNF representations. In: Proc. ICAPS-05. (2005)
14. Darwiche, A.: Decomposable negation normal form. J. ACM 48 (2001) 608–647
15. Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learn-

ing, and cutset decomposition. Artificial Intelligence 41 (1990) 273–312
16. Bonet, B., Geffner, H.: Learning in DFS: A unified approach to heuristic search in

deterministic, non-deterministic, probabilistic, and game tree settings. (2005)
17. Dechter, R.: AND/OR Search spaces for Graphical models. TR (2004)


