
Journal of Artificial Intelligence Research 24 (2005) 933–944 Submitted 12/04; published 12/05

Engineering Note

mGPT: A Probabilistic Planner Based on Heuristic Search

Blai Bonet bonet@ldc.usb.ve

Departamento de Computación
Universidad Simón Boĺıvar, Venezuela

Héctor Geffner hector.geffner@upf.edu

ICREA & Universitat Pompeu Fabra
Paseo de Circunvalación 8, Barcelona 08003, Spain

Abstract

We describe the version of the GPT planner used in the probabilistic track of the 4th
International Planning Competition (ipc-4). This version, called mGPT, solves Markov
Decision Processes specified in the ppddl language by extracting and using different classes
of lower bounds along with various heuristic-search algorithms. The lower bounds are
extracted from deterministic relaxations where the alternative probabilistic effects of an
action are mapped into different, independent, deterministic actions. The heuristic-search
algorithms use these lower bounds for focusing the updates and delivering a consistent
value function over all states reachable from the initial state and the greedy policy.

1. Introduction

mGPT is a planner based on heuristic search for solving Markov Decision Processes (MDPs)
specified in the high-level planning language ppddl. mGPT captures a fragment of the
functionality of the GPT system that handles non-determinism and incomplete information,
in both qualitative and probabilistic forms, including pomdps and Conformant planning
(Bonet & Geffner, 2000).

mGPT supports several algorithms and admissible heuristic functions (lower bounds)
that when combined generate a wide range of solvers. The main algorithms are lrtdp and
hdp. Both are heuristic-search algorithms for solving MDPs that make use of lower bounds
for computing a consistent value function V : a function with Bellman residuals bounded
by a user-provided parameter ε over all states reachable from a given initial state s0 and
the greedy policy based on V (Bonet & Geffner, 2003b, 2003a).

The lower bounds are derived by solving relaxations of the input problem. Since the al-
gorithms for solving the relaxations are also based on heuristic search, we have implemented
“stackable” software components that are created in sequence for computing complex heuris-
tic functions from simpler ones.

2. Algorithms

We divide the algorithms into two groups: those that deliver consistent value functions with
respect to a user-provided parameter ε, and those that select actions in real time. The first

c©2005 AI Access Foundation. All rights reserved.

Bonet & Geffner

class of algorithms compute an ε-consistent value function V for all states reachable from
the initial state s0, and the greedy policy πV based on V .

In the following subsection, we give definitions of admissible and consistent value func-
tions, and greedy, partial and proper policies. Then, we present the algorithms implemented
by mGPT.

2.1 Consistent Value Functions, and Greedy, Partial and Proper Policies

A value function V is admissible if it is non-overestimating; i.e. if the value V (s) at each
state s is a lower bound on the optimal expected cost of starting at s. V is ε-consistent at
state s if its Bellman residual at s,

R(s) def=
∣∣∣∣V (s) − min

a∈A(s)

[
c(s, a) +

∑
s′∈S

Pr(s′|s, a)V (s′)
]∣∣∣∣ , (1)

is less than or equal to ε. Here, A(s) denotes the actions that are applicable at s, c(s, a) is
the cost of applying action a in s, and Pr(·) is the probabilistic transition function. If V is
0-consistent at s, then we say that V is consistent at s.

A state s is reachable from the initial state s0 and policy π if there exists a trajectory
s0, s1, . . . , sn such that sn = s and P (sk+1|sk, π(sk)) > 0 for all 0 ≤ k < n. In other words,
if the state s can be reached with positive probability from s0 in zero or more steps using
the policy π.

It is known that the greedy policy πV based on the value function V , defined as

πV (s) def= argmin
a∈A(s)

[
c(s, a) +

∑
s′∈S

Pr(s′|s, a)V (s′)
]

, (2)

is optimal when V is ε-consistent over all states for a sufficiently small ε. Yet, since our goal
is to find an optimal policy with respect to the initial state s0 and the states reachable from
it, it is sufficient for V to be admissible and ε-consistent over the states that are reachable
from s0 and πV .

A partial policy π is a policy that doesn’t need to be defined for all states. It is closed
with respect to a state s if π is defined over s and all states reachable from s and π, it is
proper with respect to s if a goal state can be reached from every state reachable from s
and π, and finally it is proper if it is proper with respect to all states.

2.2 Algorithms that Compute ε-Consistent Value Functions

For the first group of algorithms, mGPT implements Value Iteration (vi), Labeled Real-
Time Dynamic Programming (lrtdp), and Heuristic Dynamic Programming (hdp).

Value Iteration (Bertsekas, 1995) is applied over the states that can be reached from
the given initial state and the available operators, and yields an ε-consistent value function
over all of them.1 mGPT’s vi serves as a bottom-line reference for comparison with the
other algorithms.

1. On undiscounted problems like those in probabilistic planning, some conditions are neeeded in order for
VI to finish with an ε-consistent value function (Bertsekas, 1995).

934

mGPT: A Probabilistic Planner Based on Heuristic Search

Labeled Real-Time Dynamic Programming (Bonet & Geffner, 2003b) is a heuristic-
search algorithm that implements a labeling scheme on top of the rtdp algorithm (Barto,
Bradtke, & Singh, 1995) to improve its convergence. Lrtdp works by performing simulated
trials that start at the initial state and end at “solved” states, selecting actions according
to the greedy policy πV and successor states according to their corresponding transition
probabilities. Initially, V is the input heuristic function, and the only solved states are the
goal states. Then, each time an action is picked at state s, the value of s is updated by
making it consistent with the value of its successors. At the end of each trial, a labeling
procedure is called that checks whether new states can be labeled as solved: a state is solved
if its value and the value of all its descendents are ε-consistent. The algorithm ends when
the initial state is labeled solved. At that point all states reachable from the initial state
s0 and the greedy policy πV are ε-consistent. The labeling mechanism also guarantees that
πV is a proper partial policy with respect to s0.

Heuristic Dynamic Programming (Bonet & Geffner, 2003a) is the second heuristic-search
algorithm supported in mGPT for solving MDPs. Hdp performs systematic depth-first
searches over the set of states reachable from the initial state s0 and the greedy policy
πV looking for ε-inconsistent states and updating their values. On top of this search,
a labeling scheme based on Tarjan’s strongly-connected components procedure (Tarjan,
1972), identifies the states that are solved and that do not need to be revisited. The initial
value function is given by a heuristic function, and the algorithm ends when the initial state
is solved. As with lrtdp, the labeling mechanism guarantees that πV is proper with respect
to s0.

2.3 Algorithms for Real-Time Action Selection

The second class of algorithms do not attempt to solve the given MDP; they rather select
actions in real-time after a limited amount of processing without offering any guarantees
on the quality of the resulting policies. Algorithms in this group include an extension of
the Action Selection for Planning algorithm (asp) (Bonet, Loerincs, & Geffner, 1997) for
probabilistic domains, which is basically an rtdp algorithm with lookahead. Asp, like rtdp,
performs value function updates over states and so cannot get trapped into a loop. Thus,
although the policy delivered by asp is suboptimal, it is a proper policy; i.e. a policy that
is guaranteed to reach a goal state.

3. Heuristics

All these algorithms assume that the initial value function is given by a heuristic function
that provides good cost estimates, and in particular, lrtdp and hdp expect this heuristic
to be admissible. As described by Pearl (1983), informative admissible heuristics can be
obtained by solving suitable relaxations of the input problem. Two such relaxations are
supported in mGPT: the min-min relaxation, and the Strips relaxation. The first defines a
(deterministic) shortest-path problem in the original state space; the second is used to define
(deterministic) shortest-path problems in atom space.2 Thus, while the first is solved in

2. Atoms refer to the propositional symbols used in the representation language, ppddl in our case, to
define the problem. The number of atoms is polynomial in the size of the input, while the size of the
state space is, in general, exponential in the number of atoms.

935

Bonet & Geffner

time polynomial in the number of states, the shortest-path problems defined by the second
are solved in time polynomial in the number of atoms. Both methods yield lower bounds on
the expected cost to the goal from a given state, yet the bounds produced by the min-min
relaxation are stronger than those produced by the Strips relaxation.

3.1 Min-Min State Relaxation

The idea behind the min-min relaxation is to transform the input probabilistic problem,
described by its Bellman equations

V ∗(s) def= min
a∈A(s)

[
c(s, a) +

∑
s′∈S

Pr(s′|s, a)V ∗(s′)
]

, (3)

into a deterministic shortest-path problem with Bellman equations of the form,

V ∗
min(s) def= min

a∈A(s)
c(s, a) + min {V ∗

min(s′) : P (s′|s, a) > 0} . (4)

At the level of the representation language, the min-min relaxation is built by trans-
forming each probabilistic operator of the form:

o = 〈ϕ, [p1 : α1, . . . , pn : αn] 〉 , (5)

where ϕ is the precondition of o and each αi is the ith probabilistic effect (with probability
pi), into a set of independent and deterministic operators of the form:

oi = 〈ϕ, αi 〉 , 1 ≤ i ≤ n . (6)

Thus, in the min-min relaxation one can actually choose the most convenient non-determinis-
tic effect of an operator, and hence, the cost of the relaxation is a lower bound on the
expected cost of the original probabilistic problem.

The min-min relaxation is a deterministic problem that can be solved by means of
standard path-finding algorithms. For example, it can be solved with Dijkstra’s algorithm,
a*, ida*, or a deterministic version of lrtdp (i.e. a labeled lrta algorithm (Korf, 1990)).

mGPT provides two methods for computing the min-min heuristic from this relaxation:
min-min-ida*, which uses ida*, and min-min-lrtdp, which uses lrtdp. Both versions
are lazy in the sense that the heuristic values of states are computed as needed when the
planner requires them.

3.2 Strips Relaxation

The Strips relaxation in turn converts the deterministic problem obtained from the min-min
relaxation into a Strips problem, and then obtains lower bounds for the original MDP by
computing lower bounds for the resulting Strips problem using the methods developed in
classical planning (e.g., Bonet & Geffner, 2001; Haslum & Geffner, 2000; Hoffmann & Nebel,
2001; Edelkamp, 2001; Nguyen & Kambhampati, 2000). These methods run in polynomial
time in the number of atoms yet, unlike the min-min relaxation, require casting the min-
min relaxation into Strips format, a conversion that, like the conversion of ADL into Strips
(Gazen & Knoblock, 1997), may require exponential time and space (see below).

936

mGPT: A Probabilistic Planner Based on Heuristic Search

In mGPT, the Strips relaxation is obtained directly from the original problem, by first
transforming the probabilistic operator into the form:

o = 〈 prec, [p1 : (add1, del1), . . . , pn : (addn, deln)] 〉 , (7)

where prec, addi, deli are conjunctions of literals that represents the precondition, the ith
add list, and the ith delete list of operator o respectively, and pi are probabilities that sum
to 1. In order to take the operators into form (7), all disjunctive preconditions, conditional
effects, and quantifiers are removed as described by Gazen and Knoblock (1997).

Once all operators have the form (7), the Strips relaxation is generated by splitting the
operators into n independent Strips operators of the form:

oi = 〈 prec, addi, deli 〉 , 1 ≤ i ≤ n . (8)

The following heuristics are implemented in mGPT upon the Strips relaxation. The
first two are lower bounds on the optimal cost of the Strips relaxation and hence on the
optimal (expected) cost of the original MDP, the third one is not necessarily a lower bound
on either cost.

• The hm heuristics (h-m) (Haslum & Geffner, 2000) are heuristics that recursively
approximate the cost of achieving a set of atoms C from the initial state by the cost
of achieving the most costly subset of size m in C. They are computed by a shortest-
path algorithm over a graph with nodes standing for sets of at most m atoms, and
result in values hm(s) that estimate the cost of reaching a goal state from s. We use
the option h-m-k in mGPT to refer to the hm heuristic with m = k.

• Pattern database heuristics (patterndb) (Edelkamp, 2001) compute optimal costs of
relaxations of the Strips problem defined by some of the multi-valued variables that
are implicit in the problem (e.g. the location of a block in the blocksworld domain is
an implicit multi-valued variable whose possible values are either the table or the top
of any other block). This heuristic is also precomputed only once, at the beginning,
and provides a lower bound on the cost of an arbitrary state to the goal. A pattern
database is computed by projecting the Strips problem with respect to a set of atoms A
(those that define the multi-valued variables) and then solving the resulting problem
optimally with Dijkstra’s algorithm. Multiple pattern databases can be combined
either by taking max or sum. In the latter case, the pattern database is referred to
as additive.3 We use additive pattern databases as defined by Haslum, Bonet, and
Geffner (2005) where some constraints of the original problem are preserved into the
projection; something that often results in stronger heuristics. Patterndb-k refers to
a pattern database heuristic defined by k multi-valued variables.

• The FF (ff) heuristic implements the heuristic function used in the FF planner (Hoff-
mann & Nebel, 2001). It is computed by building the so-called relaxed planning graph
and finding a plan in it. The heuristic is then the number of operators in such a plan.

3. Some conditions are required for adding two pattern databases such that the result remains admissible.
A sufficient condition is that A ∩ B = ∅ if the sets A and B are those used to build the projections
respectively.

937

Bonet & Geffner

The relaxed planning graph is the version of the graph constructed by Graphplan
(Blum & Furst, 1997) when delete lists are ignored. It can be shown that computing
the ff heuristic can be done in polynomial time in the size of the input problem
(Hoffmann & Nebel, 2001). This heuristic however is informative but non-admissible.

As it is shown below, these heuristics can be plugged directly into the planning algorithm
or they can be used to compute more informative heuristics. For example, the patterndb
heuristic can be used within ida* to solve the min-min relaxation, which gives a stronger
heuristic than the patterndb heuristic. Thus, mGPT implements algorithms and heuristics
as stackable software components so that an element in the stack is used to solve the elements
above it.

4. Implementation

This section gives some details on the implementation of mGPT together with examples on
its use. The mGPT system is implemented in C++ upon a preliminary parser offered by
the organizers of ipc-4.

4.1 Hash Tables

Perhaps the most important component of modern search-based planners is the internal
representation of states and hash tables. Since mGPT uses different search algorithms and
hash tables to solve a given instance (e.g. when more informative heuristics are computed
from less informative ones), good internal representations and hash table implementation
are critical for good performance.

After grounding all atoms and operators, a state is represented by the ordered list of
the atoms that hold true in the state. A state s can appear associated with different
data in multiple hash tables simultaneously. Thus, instead of having multiples “copies” of
s, mGPT implements a system-wide state-hash-table that stores the representation of the
states referenced in all hash tables so that entries in such tables simply contain a reference
into the state-hash-table. In this way, the planner saves time and space.

Another issue that has large impact on performance is the average number of collisions
in each hash table. Two points are relevant for keeping the number of collisions low:
the hashing function and the size of the hash table. For the former, we have seen that
cryptographic hashing functions like md4 behave very well even though they are slower
than more traditional choices. For the latter, mGPT uses hash tables whose size is equal
to a large prime number (Cormen, Leiserson, & Rivest, 1990).

4.2 Algorithms and Heuristics

Each algorithm in mGPT is implemented as a subclass of the abstract algorithm class
whose members are a reference to a problem and, in some cases, a reference to a hash table
and a parameter ε. Similarly, each heuristic in mGPT is implemented as a subclass of the
abstract heuristic class whose members are a reference to a problem and a function that
maps states to non-negative values. Simple heuristics like the constant-zero function are
straightforward, others like min-min-lrtdp are implemented by a class whose members are,
in addition to above, references to a hash table and to an lrtdp algorithm.

938

mGPT: A Probabilistic Planner Based on Heuristic Search

4.3 Examples

The main parameters on a call to mGPT are “-a <algorithm>” that specifies the algorithm
to use, “-h <heuristic>” that specifies the heuristic function, and “-e <epsilon>” that
specifies the threshold ε for the consistency check. A typical call looks like:

mGPT -a lrtdp -h h-m-1 -e .001 <domain> <problem>

which instructs mGPT to use the lrtdp algorithm with the h-m-1 heuristic and ε = 0.001
over the domain and problem files specified.

The h-m-1 heuristic is admissible but very weak. The following example shows how to
compute the min-min-lrtdp heuristic using h-m-1 as the base heuristic:

mGPT -a lrtdp -h "h-m-1|min-min-lrtdp" -e .001 <domain> <problem>

The pipe symbol is used to instruct the planner how heuristics are to be computed using
other heuristics.

Another possibility is to use mGPT as a reactive planner in which decisions are taken
on-line with respect to a heuristic function that is improved over time. For example,

mGPT -a asp -h ff <domain> <problem>

uses the asp algorithm with the ff heuristic, while

mGPT -a asp -h "zero|min-min-ida*" <domain> <problem>

uses the asp algorithm with the min-min-ida* heuristic computed from the constant-zero
heuristic. Other combinations of algorithms and heuristics are possible. mGPT also accepts
parameters to control initial hash size, a weight on the heuristic function, values for dead-end
states, verbosity level, lookahead settings for asp, etc.

5. The Competition

The competition suite consisted of 7 probabilistic domains named blocksworld, exploding-
blocksworld, boxworld, fileworld, tireworld, towers-of-hanoise, and zeno. Blocksworld and
exploding-blocksworld are variations of the standard blocksworld domain for classical plan-
ning. Boxworld is a logistics-like transportation domain. Fileworld is a file/folder domain
where the uncertainty is only present at the initial situation where the destination of each
file is set. Tireworld and towers-of-hanoise are variations of the classical tireworld domain
and towers-of-hanoi. Zeno is a traveling domain with a fuel resource.

Some of the domains come in two variations: a goal-oriented version where the goal is to
be achieved with certainty while minimizing expected costs, and a reward-oriented version
that involves rewards. The mGPT planner handles the first type of tasks only.

In the competition we used the lrtdp algorithm with the patterndb-1 heuristic, a
parameter ε = 0.001, and a weight W = 5 for the heuristic function. In some cases, when
the patterndb-1 heuristic was too poor, the planner switched automatically to the asp
algorithm with the ff heuristic.

939

Bonet & Geffner

problem name runs failed successful time reward
blocksworld-5 30 0 30 43 494.1
blocksworld-8 30 0 30 60 487.7
blocksworld-11 30 0 30 130 465.7
blocksworld-15 30 0 30 7,706 397.2
blocksworld-18 — — — — —
blocksworld-21 — — — — —
exploding-bw — — — — —
boxworld-c5-b10 30 0 30 6,370 183.6
boxworld-c10-b10 — — — — —
boxworld-c15-b10 — — — — —
fileworld-30-5 30 0 30 2,220 57.6
towers-of-hanoise — — — — —
tireworld-g 30 14 16 48 266.6
tireworld-r 30 0 30 39 0
zeno 30 0 30 162 500

Table 1: Results for the mGPT planner over the competition problems. The table shows
problem name, number of runs, number of failed and successful runs (see text),
and time and reward averages. A dash means that mGPT was not able to solve
the problem. Times are in milliseconds.

5.1 Results

The competition was held through a client/server model. Each planner was evaluated in
each problem over a number of runs under supervision of the server. The planner initiated
the session by connecting to the server and then interacted with it by exchanging messages.
Each run consisted of actions sent by the planner whose effects were transmitted back from
the server to the planner. Thus, the current state of the problem was maintained both by
the planner and the server.

Table 1 shows the results for mGPT over the competition problems. For each problem,
30 runs were executed. The table shows the number of runs, the number of failed runs
(i.e. those that finished without reaching a goal state), the number of successful runs (i.e.
those that finished at goal states), and the time and reward averages per run.4 For the
blocksworld, the problem blocksworld-xx means a problem with xx blocks, for boxworld,
the problem boxworld-cxx-byy means a problem with xx cities and yy boxes.

As it can be seen from the table, mGPT did not solve exploding-bw, the larger instances
of blocksworld and boxworld, and it also failed on approximately half of the instances in
tireworld-g. The difficulties encountered by mGPT in solving these problems often had
not so much to do with the probabilities involved, but with the domains, and in particular,
with the encodings. The basic algorithms used by mGPT try to solve the problems by

4. The competition format was reward-based while our presentation here is cost-based. It is straightforward
to go from one format to the other.

940

mGPT: A Probabilistic Planner Based on Heuristic Search

computing a value function with ε-residuals over the relevant states (those reachable from
the initial state by an optimal policy). For this, mGPT computes an admissible heuristic
function by solving either the min-min relaxation, the Strips relaxation, or both. A problem
faced by this approach is that in many instances neither of these relaxations could be
solved. Here, we give a detailed explanation of the problems encountered by mGPT over
the different domains. It is worth noting that many of these difficulties would surface in
any Strips planner as well, even if the probabilities are ignored.

• Blocksworld and exploding blocksworld: the operator encodings have preconditions
containing universally-quantified negative literals, as the result of not using a ‘clear’
predicate. For example,
(:action pick-up-block-from
:parameters (?top - block ?bottom)
:precondition (and (not (= ?top ?bottom))

(forall (?b - block) (not (holding ?b)))
(on-top-of ?top ?bottom)
(forall (?b - block) (not (on-top-of ?b ?top))))

:effect (and (decrease (reward) 1)
(probabilistic
0.75 (and (holding ?top) (not (on-top-of ?top ?bottom)))
0.25 (when (not (= ?bottom table))

(and (not (on-top-of ?top ?bottom))
(on-top-of ?top table)))))

)

This complex encoding is not standard in planning and makes our atom-based heuris-
tics almost useless. mGPT could solve the instances with 5, 8, 11 and 15 blocks but
not those with 18 and 21 blocks. For exploding blocksworld, mGPT was unable to
solve it as the parser is incomplete and does not parse some complex constructs.

• Boxworld: the encoding contains a ‘drive-truck’ operator that moves the truck to
its intended destination with probability 0.8 and to one of three “wrong destinations”
with probability 0.2/3 each. The encoding specifies the unintended effects by means
of nested conditional effects of the form
(:action drive-truck
:parameters (?t - truck ?src - city ?dst - city)
:precondition (and (truck-at-city ?t ?src) (can-drive ?src ?dst))
:effect (and (not (truck-at-city ?t ?src))

(probabilistic
0.2 (forall (?c1 - city)

(when (wrong-drive1 ?src ?c1)
(forall (?c2 - city)

(when (wrong-drive2 ?src ?c2)
(forall (?c3 - city)
(when (wrong-drive3 ?src ?c3)
(probabilistic
1/3 (truck-at-city ?t ?c1)
1/3 (truck-at-city ?t ?c2)
1/3 (truck-at-city ?t ?c3))))))))

0.8 (truck-at-city ?t ?dst)))
)

941

Bonet & Geffner

Our Strips relaxation, like any planner that converts ADL-style operators into Strips,
suffers an exponential blow up in this domain: with 10 cities, there are more than
a thousand operators for each grounded ADL-operator. This set included problems
with 5, 10 and 15 cities.

• Fileworld: in this domain, there are 30 files that need to be filed into one of 5 different
folders: the exact destination determined probabilistically. The optimal policy for this
problem, and any proper policy, must prescribe an action for more than 530 states, all
of them relevant. The consequence is a problem with millions of relevant states that
need to be stored into the hash table if the task is to compute a proper policy. The
patterndb-1 heuristic for this problem is not informative, as revealed by an analysis
of the values stored in the pattern database, and thus mGPT switched automatically
to the asp algorithm with the ff heuristic.

• Towers-of-hanoise: as in the blocksworld domain, the encoding is complex with oper-
ators that have disjunctions and universally-quantified negative literals in the precon-
ditions, and complex conditional effects. Yet the problem that prevented mGPT from
solving any problem in this domain is a bug in the code that implements conditional
effects which did not surface in the other domains.

• Tireworld: there are two versions: a goal-based version called tireworld-g and a
reward-based version called tireworld-r. The domain contains multiple dead ends
at locations where the car gets a flat tire and no spare tire is available. Some of the
dead ends are unavoidable; i.e. there is no proper policy for this problem. All trials for
the reward-based version end successfully since there is no requirement to reach a goal
position, rather the objective is to maximize the accumulated reward. mGPT treated
both versions as goal-based problems as it does not deal directly with reward-based
problems.

6. Conclusions

The mGPT planner entered into the probabilistic planning competition combines heuristic-
search algorithms with methods for obtaining lower bounds from deterministic relaxations.
The results obtained at the competition were mixed with some of the difficulties having to do
with the selection of domains and encodings which do not match the capabilities of mGPT:
mGPT tries to compute proper solutions using heuristics derived from the Strips relaxations.
As we have described, some of the domains could not be solved due to the number of relevant
states, and others due to the complexity of the Strips relaxations themselves.

For the definition of good benchmarks for MDP solvers, it is crucial to define what
constitutes a solution and what is the bottom line for assessing performance. In classical
planning, for example, the solutions are plans and the bottom line is given by blind-search
algorithms; progress in the field can then be measured by the distance to this bottom line.
In the probabilistic setting, this is more difficult as it is not always clear what it means to
solve a problem. This, however, needs to be defined in some way, otherwise performance
comparisons are not meaningful. Indeed, in the classical setting, one no longer compares
optimal with non-optimal planners since both types of planners are very different: one
provides guarantees that apply to all solutions, while the other provides guarantees that

942

mGPT: A Probabilistic Planner Based on Heuristic Search

apply to one solution only. In the probabilistic setting this is even more subtle as there are
different types of guarantees. For example, if we restrict ourselves to the class of MDPs
that constitute the simplest generalization of the classical setting — the task of reaching
the goal with certainty while minimizing the expected number of steps from a given initial
state s0 — there are methods that yield solutions (policies) that ensure that the goal will be
reached with certainty in a finite number of steps (not necessarily optimal), and methods
with no such guarantees. Both types of methods are necessary in practice, yet it is crucial
to make a distinction among them and to identify useful benchmarks in each class. For
methods that yield optimal policies, or at least policies with finite expected costs, standard
dynamic programming methods like value iteration provide a useful bottom-line reference
for assessing performance. In any case, we believe that useful benchmarks need to be defined
taking into account the types of tasks that the various algorithms aim to solve, and the
types of guarantees, if any, that they provide in their solutions.

GPT and mGPT are available for download at http://www.ldc.usb.ve/∼bonet.

Acknowledgements

mGPT was built upon a parser developed by John Asmuth from Rutgers University and
H̊akan Younes from Carnegie Mellon University. We also thank David E. Smith for com-
ments that helped us to improve this note.

References

Barto, A., Bradtke, S., & Singh, S. (1995). Learning to act using real-time dynamic pro-
gramming. Artificial Intelligence, 72, 81–138.

Bertsekas, D. (1995). Dynamic Programming and Optimal Control, (2 Vols). Athena Sci-
entific.

Blum, A., & Furst, M. (1997). Fast planning through planning graph analysis. Artificial
Intelligence, 90, 281–300.

Bonet, B., & Geffner, H. (2000). Planning with incomplete information as heuristic search
in belief space. In Chien, S., Kambhampati, S., & Knoblock, C. (Eds.), Proc. 6th
International Conf. on Artificial Intelligence Planning and Scheduling, pp. 52–61,
Breckenridge, CO. AAAI Press.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129 (1–
2), 5–33.

Bonet, B., & Geffner, H. (2003a). Faster heuristic search algorithms for planning with
uncertainty and full feedback. In Gottlob, G. (Ed.), Proc. 18th International Joint
Conf. on Artificial Intelligence, pp. 1233–1238, Acapulco, Mexico. Morgan Kaufmann.

Bonet, B., & Geffner, H. (2003b). Labeled RTDP: Improving the convergence of real-time
dynamic programming. In Giunchiglia, E., Muscettola, N., & Nau, D. (Eds.), Proc.
13th International Conf. on Automated Planning and Scheduling, pp. 12–21, Trento,
Italy. AAAI Press.

943

Bonet & Geffner

Bonet, B., Loerincs, G., & Geffner, H. (1997). A robust and fast action selection mechanism
for planning. In Kuipers, B., & Webber, B. (Eds.), Proc. 14th National Conf. on
Artificial Intelligence, pp. 714–719, Providence, RI. AAAI Press / MIT Press.

Cormen, T., Leiserson, C., & Rivest, R. (1990). Introduction to Algorithms. MIT Press.

Edelkamp, S. (2001). Planning with pattern databases. In Cesta, A. (Ed.), Proc. 6th
European Conf. on Planning, pp. 13–24, Toledo, Spain. Springer: LNCS.

Gazen, B., & Knoblock, C. (1997). Combining the expressiveness of UCPOP with the
efficiency of Graphplan. In Steel, S., & Alami, R. (Eds.), Proc. 4th European Conf.
on Planning, pp. 221–233, Toulouse, France. Springer: LNCS.

Haslum, P., Bonet, B., & Geffner, H. (2005). New admissible heuristics for domain-
independent planning. In Veloso, M., & Kambhampati, S. (Eds.), Proc. 20 National
Conf. on Artificial Intelligence, pp. 1163–1168, Pittsburgh, PA. AAAI Press / MIT
Press.

Haslum, P., & Geffner, H. (2000). Admissible heuristic for optimal planning. In Chien, S.,
Kambhampati, S., & Knoblock, C. (Eds.), Proc. 6th International Conf. on Artificial
Intelligence Planning and Scheduling, pp. 140–149, Breckenridge, CO. AAAI Press.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.

Korf, R. (1990). Real-time heuristic search. Artificial Intelligence, 42 (2–3), 189–211.

Nguyen, X., & Kambhampati, S. (2000). Extracting effective and admissible state-space
heuristics from the planning graph. In Kautz, H., & Porter, B. (Eds.), Proc. 17th
National Conf. on Artificial Intelligence, pp. 798–805, Austin, TX. AAAI Press /
MIT Press.

Pearl, J. (1983). Heuristics. Morgan Kaufmann.

Tarjan, R. E. (1972). Depth first search and linear graph algorithms. SIAM Journal on
Computing, 1 (2), 146–160.

944

