Planning Graphs and Knowledge Compilation

Héctor Geffner ICREA and Universitat Pompeu Fabra Barcelona, SPAIN 6/2004

Planning as SAT (Kautz and Selman)

- Encode: Map Strips problem P with horizon n into a propositional theory T
- Solve: Using a SAT solver, determine if T is consistent, and if so, find a model
- **Decode:** Extract plan from model

Our goal

Use of propositional logic for **defining and computing lower bounds for planning** (admissible heuristics)

- understand the planning graph construction as a precise form of inference
- exploit account to uncover **relations** (e.g., to variable elimination) and introduce **generalizations** (e.g., incomplete information)

Strips Refresher

- A problem in Strips is a tuple $\langle A, O, I, G \rangle$ where
 - -A stands for set of all **atoms** (boolean vars)
 - O stands for set of all operators (ground actions)
 - $-I \subseteq A$ stands for initial situation
 - $G \subseteq A$ stands for goal situation
- The operators $o \in O$ represented by three lists
 - -- the **Add** list $Add(o) \subseteq A$
 - -- the **Delete** list $Del(o) \subseteq A$
 - -- the **Precondition** list $Pre(o) \subseteq A$
- The **task** is to find a plan: a sequence of applicable actions that maps *I* into *G* . . .

Lower Bounds and Planning Graphs

• Build graph with layers P_0 , A_0 , P_1 , A_1 , . . . where

• Graph represents lower bound for achieving G from s:

 $h_{max}(s) = \min i$ such that $G \subseteq P_i$

Need No-op(p) action for each p: $Prec = Add = \{p\}$

More Informed *h* in Graphplan

- Planning graph in Graphplan also keeps track of **pairs** that cannot be reached simultaneously in i steps, i = 0, 1, ...
 - action pair mutex at i if incompatible or preconditions mutex at i
 - atom pair mutex at i + 1 if supporting action pairs all mutex at i
- Mutexes computed along with planning graph and yield more informed admissible \boldsymbol{h}

 $h_G(s) \stackrel{\text{def}}{=} \min i \text{ s.t. } G \subseteq P_i \text{ and } G \text{ not mutex at } i$

Graphplan is an IDA* regression solver driven by this heuristic

Lower Bounds crucial in Planning and Problem Solving

- LBs explain performance gap between Graphplan and predecessors
- In **SAT/CSP** planning models, LBs represent implicit constraints that speed up the search:

SAT/CSP approaches to planning indeed do not encode the planning problem directly but its **planning graph**

 Our main goal in this work: understand derivation of these LBs or implicit constraints in the planning graph as a precise form of inference

Deductive Inference and Lower Bounds for Planning

• Consider following heuristic h where T encodes Strips problem with horizon n without the goal

$$h(G) \stackrel{\mathsf{def}}{=} \min i \leq n$$
 such that $T \not\models \neg G_i$

i.e., h(G) encodes first time i at which goal G consistent with T

- Such *h* is well defined
 - Good news: *h* very informative; indeed $h(G) = h^*(G)$ (optimal)
 - Bad news: *h* intractable

Deductive Inference and Lower Bounds (cont'd)

Consider now approximation h_{Γ} given by sets Γ_0 , ..., Γ_n of **deductive** consequences of T at the various time points 0, ..., n:

$$h_{\Gamma}(G) \stackrel{\text{def}}{=} \min i \leq n$$
 such that $\Gamma_i \not\models \neg G_i$

- If sets $\Gamma_i = \emptyset$, then $h_{\Gamma}(G) = 0$ (non-informative)
- If sets $\Gamma_i = PI_i(T)$, then $h_{\Gamma}(G) = h(G)$ (intractable)
- Always $0 \le h_{\Gamma} \le h$

Question: how to define sets Γ_i so that resulting LBs are **informative** and tractable?

 $(PI_i(T) = prime implicates of T at time i)$

Prime Implicates and Lower Bounds: First attempt

Stratify Strips theory ${\cal T}$ (without the goal) as

 $T = T_0 \cup T_1 \cup \cdots \cup T_m$

Define sequence of sets Γ_i iteratively as

$$\Gamma_0 \stackrel{\text{def}}{=} PI_0(T_0)$$

$$\Gamma_{i+1} \stackrel{\text{def}}{=} PI_{i+1}(\Gamma_i \cup T_{i+1})$$

It follows that no info lost in iteration, and same sets and h result:

 $\Gamma_i = PI_i(T)$ $h_{\Gamma} = h = h^*$

But then computation of h_{Γ} remains **intractable** . . .

Hector Geffner, Planning Graphs and Knowledge Compilation, 6/2004

Prime Implicates and Tractable Lower Bounds

Define sequence of sets Γ_i iteratively as

 $\Gamma_0 \stackrel{\text{def}}{=} PI_0^k(T_0)$ $\Gamma_{i+1} \stackrel{\text{def}}{=} PI_{i+1}^k(\Gamma_i \cup T_{i+1})$

for a fixed k = 1, 2, ..., where $PI_i^k(T)$ stands for set of prime implicates of T at time i with size no greater than k

Key result: We show in paper that for Strips theories T

- sequence of Γ_i sets and h_{Γ} informative **and** tractable
- h_{Γ} equal to Graphplan h_G for k=2, and
- $x \in Layer_i$ iff $\neg x_i \notin \Gamma_i$ AND $(x, y) \in Layer_i$ iff $\neg x_i \lor \neg y_i \in \Gamma_i$

where $x \in Layer_i$ and $(x, y) \in Layer_i$ stand for atom and mutex pair in layer i of planning graph

General Framework: Stratified Theories

Propositional theories T defined over indexed variables $x_i \in L_i$, $0 \le i \le m$, that can be expressed as union of subtheories T_0, \ldots, T_m where

- T_0 made up of clauses $C_0 \in L_0$
- T_{i+1} made up of clauses $C_i \vee C_{i+1}$, where $C_{i+1} \in L_{i+1}$ and $C_i \in L_i$ (C_{i+1} non-empty)

Example: Stratified theory for Strips with horizon n

- 1. Init T_0 : p_0 for $p \in I$, and $\neg q_0$ for $q \in A$ not in I
- 2. Action Layers T_{i+1} : for $i = 0, 2, \ldots, n-2$
 - $p_i \vee \neg a_{i+1}$ for each $a \in O$ and $p \in pre(a)$
 - $\neg a_{i+1} \lor \neg a_{i+1}'$ for interfering a, a' in O
- 3. Propositional Layers T_{i+1} : for $i = 1, 3, \ldots, n-1$
 - $\neg a_i \lor p_{i+1}$ for each $a \in O$ and $p \in add(a)$
 - $\neg a_i \lor \neg p_{i+1}$ for each $a \in O$ and $p \in del(a)$
 - $a_i^1 \vee a_i^2 \vee \cdots \vee a_i^{n_p} \vee \neg p_{i+1}$ for each $p \in A$

Tractable PI-k Inference over Stratified Theories

Three conditions guarantee that the **iterative computation of prime implicates of bounded size** remains **tractable** for stratified theories T:

$$\Gamma_0 \stackrel{\text{def}}{=} PI_0^k(T_0)$$

$$\Gamma_{i+1} \stackrel{\text{def}}{=} PI_{i+1}^k(\Gamma_i \cup T_{i+1})$$

1. T is compiled: resolvents over variables x_{i+1} in T_{i+1} subsumed in T

- 2. *T* has bounded support width: number of clauses $C_i \vee C_{i+1}$ in T_{i+1} with common literal $l_{i+1} \in C_{i+1}$ and body $|C_i| > 1$, bounded
- 3. T is pure: only x_{i+1} or $\neg x_{i+1}$ occur in T_{i+1}
 - Stratified Strips theories are compiled, have support width 1, and can easily be made pure (3. not needed for $k \le 2$)
 - Paper contains sound algorithm for computing Γ_i sets that under conditions 1--3 is complete and polynomial

Graphplan vs. Variable Elimination and Variations

- Variable Elimination is a family of algorithms for solving SAT, CSPs, Bayesian Networks, etc (Dechter et al) that follows the pattern of gaussian elimination for solving linear equations
- Given a theory $T = T_0$ over variables x_0, \ldots, x_n
 - Forward pass: eliminate var x_i from T_i resulting in theory T_{i+1} over x_{i+1}, \ldots, x_n , $0 \le i < n$
 - Backward pass: Solve theories T_n , T_{n-1} , ..., T_0 in order, each for a single variable; result is a model (if T is satisfiable)
- -- Good: backward pass (solution extraction) is backtrack free
- -- Bad: forward pass (elimination pass) is exponential in time and space

Alternative 1: Bounded-k Variable Elimination

- Restricts size of constraints induced by elimination of vars to k
- Elimination sound but not complete; performs in **polynomial time** (removes some but not all backtracks)

Alternative 2: Bounded-k Block Elimination

- Eliminates **blocks** of vars in one-shot, inducing constraints of size $\leq k$ only
- Stronger than Bounded-k Var Elimination, but exponential in size of blocks

Graphplan and Bounded-k Elimination

As a corollary of earlier results we get that:

- For **Strips theories**, Bounded-k Block Elimination is **polynomial** in the size of the blocks (blocks are the sets of vars in same layer)
- Graphplan actually does a **Bounded-2 Block Elimination** pass foward **exactly**, followed by a backward Backtrack Search
- Thus Graphplan fits nicely in the variable elimination framework, where it exploits the **special structure of Strips theories**

Negative vs. Positive Deductive Lower Bound

LB scheme based on proving negation of the goal

$$h(G) \stackrel{\text{def}}{=} \min i \leq n$$
 such that $T \not\models \neg G_i$

h(G) is a LB because

if \exists Plan that achieves G in $m \leq n$ steps, then $\exists M$ of $T \wedge G_m$, then $T \not\models \neg G_m$

Question: Can we define LBs based on the proving the goal itself, possibly from transformed theory T^+ ?

$$h^+(G) \stackrel{\text{def}}{=} \min i \leq n$$
 such that $T^+ \models G_i$

Hector Geffner, Planning Graphs and Knowledge Compilation, 6/2004

A Positive Deductive Lower Bound

- Define T^+ as Strips encoding (without the goal) but with
 - deletes removed
 - all possible actions applied: $prec(a)_i \supset a_i$
- Then it turns out
 - T^+ consistent and tractable
 - $T + \models G_i$ iff $\Gamma_i \not\models G_i$ for k = 1
- Thus
 - Positive and Negative LBs coincide for k = 1
 - Positive LBs weaker than negative ones for k > 1
 - Nonetheless former useful in non-Strips settings . . .

Positive Deductive LBs when Information is Incomplete

 $h^+(G) \stackrel{\text{def}}{=} \min i \leq n$ such that $T^+ \models G_i$

- With incomplete info, test $T^+ \models G_i$ intractable
- Still heuristic h^{++} defined as

 $h^{++}(G) \stackrel{\text{def}}{=} \min i \leq n$ such that $T^{++} \models G_i$

for any theory T^{++} stronger than T^+ remains a LB

- Thus tractable LB can be obtained by mapping T^+ into stronger and tractable T^{++}
- So 'bounds' in Planning and Knowledge Compilation (Kautz and Selman) related after all . . .
- Indeed, h used in Brafman-Hoffmann ICAPS 04, can be understood in terms of a compilation of T^+ into a 2-CNF theory T^{++} (which is not necessarily the 2-CNF LUB of T^+)

Summary

- Framework: Iterative computation of prime-implicates of bounded size over stratified theories
- Conditions under which this computation is **tractable**; **Strips** theories as special case
- Correspondence with planning graph computation and weak forms of variable elimination
- Positive vs. Negative Deductive Lower bounds
- Uses beyond Strips: conditional effects; incomplete information