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Abstract

Humans encounter a huge variety of problems
which they must solve using general methods.
Even simple problems, however, become compu-
tationally hard for general solvers if the struc-
ture of the problems is not recognized and ex-
ploited. Work in Artificial Intelligence Planning
and Problem Solving has encountered a similar dif-
ficulty, leading in recent years to the development
of well-founded and empirically tested techniques
for recognizing and exploiting structure, focusing
the search for solutions in certain cases, and by-
passing the need to search in others. These tech-
niques include the automatic derivation of heuristic
functions, the use of limited but effective forms of
inference, and the compilation of domains, all of
which enable a general problem solver to ‘adapt’
automatically to the task at hand. In this paper, I
present the ideas underlying these new techniques,
and argue for their relevance to models of natural
intelligent behavior as well. The paper is not a re-
view of AI Planning – a diverse field with a long
history – but a personal appraisal of some recent
key developments and their potential bearing on ac-
counts of action selection in humans and animals.

1 Introduction
In the late 50’s, Newell and Simon introduced the first AI
planner – the General Problem Solver or GPS – as a psycho-
logical theory[Newell and Simon, 1958; 1963]. Since then,
Planning has remained a central area in AI while changing in
significant ways: it has become more mathematical (a variety
of planning problems has been clearly defined and studied)
and more empirical (planners and benchmarks can be down-
loaded freely, and competitions are held every two years), and
as a result, new ideas and techniques have been developed that
enable the automatic solution of large and complex problems
[Smith, 2003].

AI Planning studies languages, models, and algorithms for
describing and solving problems that involve the selection of
actions for achieving goals. In the simplest case, inclassi-
cal planning, the actions are assumed deterministic, while in
contingent planning,actions are non-deterministic and there

is feedback. In all cases, the task of the planner is to com-
pute a plan or solution; theform andcostof these solutions
depending on the model; e.g., in classical planning, solutions
are sequences of actions and cost is measured by the number
of actions, while in planning with uncertainty and feedback,
solutions map states into actions, and cost stands for expected
or worst-possible cost.

Planning is a form of ’general problem solving’ over a class
of models, or more precisely, amodel-basedapproach to in-
telligent behavior: given a problem in the form of a com-
pact description of the actions, sensors (if any), and goals,
a planner must compute a solution, and if required, a solu-
tion that minimizes costs. Some of the models used in plan-
ning, as for example Markov Decision Processes (MDPs), are
not exclusive to AI Planning, and are used for example in
Control Theory[Bertsekas, 1995], Reinforcement Learning
[Sutton and Barto, 1998], and Behavioral Ecology[Hous-
ton and McNamara, 1988; Clark, 1991] among other fields.
What is particular about AI planning are thelanguagesfor
representing these models, thetechniquesfor solving them,
and the ways these techniques arevalidated. Techniques
do matter quite a lot: even simple problems give rise to
very large state spaces that cannot be solved by exhaus-
tive methods. Consider the well known Rubik Cube puz-
zle: the number of possible configurations is in the order
of trillions, yet methods are known for solving it, even op-
timally, from arbitrary configurations[Korf, 1998]. The key
idea lies in the use ofadmissible heuristic functionsthat pro-
vide an optimistic approximation of the number of moves
to solve the problem from arbitrary configurations. These
functions enable the solution of large problems, even en-
suring optimality, by focusing the search and avoiding most
states in the problem. Interestingly, recent work in plan-
ning has shown that such functions can be derivedauto-
matically from the problem description[Bonet and Geffner,
2001], and can be used to drive the search in problems in-
volving uncertainty and feedback as well[Bonet and Geffner,
2000]. Such functions can be understood as a specific and ro-
bust form ofmeans-ends analysis[Newell and Simon, 1958;
1963] that produces goal-directed behavior in complex set-
tings even in the presence of large state and action spaces.

In this paper, we review some of the key computational
ideas that have emerged from recent work in planning and
problem solving in AI, and argue that these ideas, although



not necessarely in their current form, are likely to be rele-
vant for understanding natural intelligent behavior as well.
Humans encounter indeed a huge variety of problems which
they must solve using general methods. It cannot be other-
wise, because there cannot be as many methods as problems.
Yet, simple problems become computationally hard for a gen-
eral solver if the structure of the problems is not recognized
and exploited. This is well known in AI, where systems that
do not exhibit this ablity tend to be shallow and brittle. In
the last few years, however, work in Planning and Problem
Solving has led to well-founded and empirically tested tech-
niques for recognizing and exploiting structure, focusing the
search for solutions, and in certain cases, bypassing the need
to search altogether. These techniques include the automatic
derivation of heuristic functions, the use of limited but effec-
tive forms of inference, and the compilation of domains, all
of which enable a general problem solver to ‘adapt’ automat-
ically to the task at hand. Interestingly, the need for focus-
ing the search for solutions has been recognized in a number
of recent works concerned with natural intelligent behavior,
where it has been related to the role of emotions in the ap-
praisal and solution of problems. We will say more about this
as well.

Since Newell’s and Simon’s GPS, the area of AI planning
has departed from the original motivation of understanding
human cognition to become the mathematical and computa-
tional study of the problem of selecting actions for achiev-
ing goals. Yet after all these years, and given the progress
achieved, it is time to reflect on what has been learned in the
abstract setting, and use it for informing our theories in the
natural setting. This exercise is possible and may be quite re-
warding. It parallels the approach advocated by David Marr,
and echoed more recently by[Glimcher, 2003] and others in
the Brain Sciences; namely: characterizewhat needs to be
computed,how it can be computed, and how these computa-
tions areapproximatedin real-brains. The findings that we
summarize below, aim to provide a partial account of the first
two tasks.

A few methodological comments before proceeding. First
aboutdomain-generalityvs. domain-specificityin action se-
lection. I have said that humans are capable of solving a wide
range of problems using general methods. This, however, is
controversial. Both evolutionary psychologists[Tooby and
Cosmides, 1992] and cognitive scientists from the ’fast and
frugal heuristics’ school[Gigerenzer and Todd, 1999] place
an emphasis on modularity and domain-specificity. Others,
without necessarily denying the role of specialization, pos-
tulate the presence of general reasoning and problem solv-
ing mechanisms as well, at least in humans (see for example
[Stanovich, 2004]). We are not going to address this contro-
versy here, just emphasize that ’general’ and ’adapted’ are
not necessarily opposite of each other. Indeed, the work in AI
planning is domain-independent, yet the recent techniques il-
lustrate how a general problem solver can ’adapt’ to a specific
problem by recognizing and exploiting structure, for exam-
ple, in the form of heuristic functions. These heuristics are
indeed in line with the ’fast and frugal heuristics’, the differ-
ence being that they are general and can be extracted auto-
matically from problem descriptions.

Another distinction that is relevant for fitting the work in
AI Planning within the broader work on Intelligent Behavior
is the one betweenfinding solutionsvs. executing solutions.
For many models, such as those involving uncertainty and
feedback, the solutions, from a mathematical point of view,
are functions mapping states into actions (these functions are
called closed-loop policies, and in the partially observable
case map actuallybelief statesinto actions; see below). These
functions can be represented in many ways; e.g. as condition,
action rules, as value functions, etc. Indeed, in what is of-
ten calledbehavior-based AI[Brooks, 1997], these solutions
are encoded by hand for controlling mobile robots. In na-
ture, similar solutions are thought to be encoded in brains but
not by hand but by evolution. Representing and executing
solutions, however, while challenging, is different than com-
ing up with the solutions in the first place which is what AI
Planning is all about. Whether this is a requirement of intelli-
gent behavior in animals is not clear although it seems to be a
distinctive feature of intelligent behavior in humans. Interest-
ingly, in many cases, the same models can be used for both
understandingthe solutions found in nature, and forgener-
ating those solutions[McFarland and Bosser, 1993]. The in-
terest in the latter case, however, is not only with the models
but also with the algorithms needed for solving those models
effectively. We thus consider both models and algorithms.

2 Models
Most models considered in AI Planning can be understood in
terms ofactionsthat affect thestateof a system, and can be
given in terms of

1. a discrete and finite state spaceS,
2. an initial states0 ∈ S,
3. a non-empty set of terminal statesST ⊆ S,
4. actionsA(s) ⊆ A applicable in each non-terminal state,
5. a functionF (a, s) mapping non-terminal statess and ac-

tionsa ∈ A(s) into setsof states
6. action costsc(a, s) for non-terminal statess, and
7. terminal costscT (s) for terminal states.

In deterministic planning, there is a single predictable next
state and hence|F (a, s)| = 1, while in non-neterministic
planning |F (a, s)| ≥ 1. In addition, in probabilistic plan-
ning (MDPs), non-deterministic transitions are weighted with
probabilitiesPa(s′|s) so that

∑
s′∈F (a,s) Pa(s′|s) = 1. In

general, action costsc(a, s) are assumed to be positive, and
terminal costscT (s) non-negative. When zero, terminal
states are calledgoals. The models underlying 2-player
games such as Chess can be understood also in these terms
with opponent moves modeled as non-deterministic transi-
tions. Often models are described in terms of rewards rather
than costs, or in terms of both, yet care needs to be taken
so that models have well-defined solutions. State models of
this type are also considered in Control Theory[Bertsekas,
1995], Reinforcement Learning[Sutton and Barto, 1998],
and Behavioral Ecology[Houston and McNamara, 1988;
Clark, 1991]. In [Astrom, 1965], it is shown how problems
involving partial feedback can be reformulated as problems
involving full state feedback overbelief states; i.e., states that



encode the information about the true state of the system. All
these problems can also be cast assearch problemsin either
the original state space or belief space[Bonet and Geffner,
2000].

The solutions to these various state models have a mathe-
matical form that depends on the type of feedback. In prob-
lems without feedback, solutions are sequences of actions,
while in problems with full-state feedback solutions are func-
tions mapping states into actions (called also closed-loop con-
trol policies). The form of the solution to the various models
need to be distinguished from the way they are represented.
A common, compact representation of policies is in terms of
condition, action rules; yet many of the standard algorithms
assume a representation of policies in terms of less-compact
value functions. The problem of combining robust algorithms
with compact representations is not yet solved, although sig-
nificant progress has been achieved when actions can be as-
sumed to be deterministic.

From a complexity point of view, if there aren variables,
the state space (range of possible value assignments) is ex-
ponential inn. Thus, except for problems involving very
few variables, exhaustive approaches for specifying or solv-
ing these models are unfeasible. A key characteristic of AI
Planning are the languages for representing these models, and
the techniques used for solving them.

3 Languages
A standard language for representing state models in compact
form is Strips[Fikes and Nilsson, 1971].1 In Strips, a prob-
lem P is expressed as a tupleP = 〈A,O, I, G〉 whereA is
the set of atoms or boolean variables of interest,O is the set
of actions, andI ⊆ A, andG ⊆ A are the atoms that are
true in the initial and goal situations respectively. In addition,
each actiona ∈ O is characterized by three sets of atoms:
the atomspre(a) that must be true in order for the action to
be executable (preconditions), the atomsadd(a) that become
true after the action is done (add list), and finally, the atoms
del(a) that become false after doing the action (delete list).

A Strips planner is ageneral problem solverthat accepts
descriptions of arbitrary problems in Strips, and computes
a solution for them; namely, sequences of actions mapping
the initial situation into the goal. Actually, any deterministic
state model can be expressed in Strips, and any Strips prob-
lem P = 〈A,O, I, G〉 defines a precise state modelS(P )
where

• the statess are the different subsets of atoms inA
• the initial states0 is I
• the goal statessG are those for whichG ⊆ sG

• A(s) is the subset of actionsa ∈ O s.t.pre(a) ⊆ s
• F (a, s) = {s + Add(a)−Del(a)}, for a ∈ A(s)
• the actions costsc(a, s) are uniform (e.g.,1)

Extensions of the Strips language for accommodating non-
boolean variables and other features have been developed,
and planners capable of solving large and complex problems

1Strips is the name of a planner developed in the late 60’s at SRI,
a successor of Newell’s and Simon’s GPS.

currently exist. This is the result of new ideas and a solid em-
pirical methodology in AI Planning following[Penberthy and
Weld, 1992], [Blum and Furst, 1995], and others in the 90’s.

4 Is Strips Planning relevant at all?
Before getting into the techniques that made this progress
possible, let us address some common misconceptions about
Strips planning. First, it is often said that Strips planning can-
not deal with uncertainty. This is true in one way, but not in
another. Namely, the modelS(P ) implicit in a Strips en-
codingP does notrepresentuncertainty. Yet this does not
imply that Strips planning cannotdeal with uncertainty. It
actually can. Indeed, the ‘winner’ of the ICAPS 2004 Proba-
bistic Planning Competition[Littman, 2005], FF-Replan,2 is
based on a Strips planner called FF[Hoffmann and Nebel,
2001]. While the actions in the domain were probabilistic,
FF-Replan ignores the probabilities and replans from scratch
using FF after every step. Since currently, this can be done
extremely fast even in domains with hundred of actions and
variables, this deterministic re-planner did better than more
sophisticated probabilistic planners. It does not take much
to see that this strategy may work well in a ‘noisy’ Block
Worlds domain where blocks may accidentally fall off grip-
per, and actually it is not trivial to come up with domains
where this strategy will not work (this was indeed the problem
in the competition). Control engineers know this very well:
stochastic systems are often controlled by closed-loop con-
trol policies designed under deterministic approximations, as
in many cases errors in the model can be safely corrected
through the feedback loop.

A second misconception about Strips or ‘classical’ plan-
ning is that actions denote ‘primitive operations’ that all take
a unit of time. This is not so: Strips planning is about plan-
ning with operators that can be chacterized in terms of pre
and postconditions. The operator themselves can be abstrac-
tions of lower level policies, dealing with low level actions
and sensors. For example, the action of grabbing a cup in-
volves moving the arm in certain ways, sensing it, and so on;
yet for higher levels, it is natural to assume that the action
can be summarized in terms of preconditions involving the
proximity of the cup, a free-hand, etc; and postconditions in-
volving the cup in the hand and so on. Reinforcement learn-
ing has been shown to be a powerful approach for learning
low-level skills, but it has been less successful for integrating
these skills for achieving high-level goals. The computational
success of Strips planning suggests that one way of doing this
is by characterizing low-level behaviors in terms of pre and
postconditions, and feeding such behaviors into a planner.

5 Heuristic Search
How can current Strips planners assemble dynamically and
effectively low-level behaviors, expressed in terms of pre and
post conditions, for achieving goals? The idea is simple: they
exploit the structure of the problems by extracting automati-
cally informative heuristic functions. While the idea of using

2FF-Replan was developed by SungWook Yoon, Alan Fern and
Robert Givan from Purdue.



heuristic functions for guiding the search is old[Hart et al.,
1968], the idea of extracting these functions automatically
from problem encodings is more recent[McDermott, 1996;
Bonetet al., 1997], and underlies most current planners.

In order to illustrate the power of heuristic functions for
guiding the search, consider the problem of looking in a
map for the shortest route between Los Angeles and New
York. One of the best known algorithms for finding short-
est routes is Dijkstra’s algorithm[Cormenet al., 1989]: the
algorithm efficiently and recursively computes the shortest
distancesg(s) between the origin and the closest ‘unvisited’
cities s til the target is reached. A characteristic of the al-
gorithm when applied to our problem, is that it would first
find a shortest path from LA to Mexico City, even if Mexico
City is way out of the best path from LA to NY. Of course,
this is not the way people find routes in a map. Theheuris-
tic search algorithmsdeveloped in AI approach this problem
in a different way, taking into account an estimateh(s) of
the cost (distance) to go froms to the goal. In route find-
ing, this estimate is given by the Euclidian distance in the
map that separatess from the goal. Using then the sum
of the costg(s) to get to s and an estimateh(s) of the
cost-to-go froms to the goal, heuristic or informed search
algorithms are much morefocusedthan blind search algo-
rithms like Dijkstra, without sacrificing optimality. For ex-
ample, in finding a route from Los Angeles to New York,
heuristic search algorithms like A* or IDA*[Pearl, 1983;
Russell and Norvig, 1994], would never consider ‘cities’
whose valueg(s) + h(s) is above the cost of the problem.
These algorithms guarantee also that the solutions found are
optimal provided that the heuristic functionh is admissible
or optimistic, i.e., if for anys, h(s) ≤ V ∗(s), whereV ∗ is
the optimal cost function. In the most informed case, when
h = V ∗, heuristic search algorithms are completely focused
and consider only states along optimal paths, while in the
other extreme, ifh = 0, they consider as many states as Dijk-
stra’s algorithm. Most often, we are not in either extreme,
yet good informed heuristics can be found that reduce the
space to search quite drastically. For example, while with
today’s technology it is possible to explore in the order of
1010 states, optimal solutions to arbitrary configuration of the
Rubik’s Cube with more than1020 states, have been reported
[Korf, 1998]. These search methods are very selective and
consider a tiny fraction of the state space only, smaller actu-
ally than1/1010.

6 Deriving Heuristic Functions

Two key questions arise: 1) How can these heuristics be ob-
tained? and 2) Whether similar gains can be obtained in other
models, e.g., when actions are not deterministic and states are
not necessarily fully observable. We address each question in
turn.

The power of current planners arises from methods for ex-
tracting heuristic valuesh(s) automatically from problem en-
codings. The idea is to set the estimated costsh(s) of reach-
ing the goal froms to the cost of solving a simpler, relaxed
problem. Strips problems, for example, can be relaxed by
dropping the delete lists. Solving (non-optimally) a delete-

free Strips problem can be done quite efficiently, and the
heuristich(s) can be set to the cost of the relaxation. The
idea of obtaining heuristics by solving relaxed problems is
old [Pearl, 1983], but the use of Strips relaxations for deriving
them automatically for planning is more recent[McDermott,
1996; Bonetet al., 1997]. Since then other relaxations have
been been considered. In[Bonet et al., 1997], the derived
heuristics are used for selecting actions greedily, in real-time,
without finding a complete plan first. The proposal is closely
related to thespreading activation modelof action selection
in [Maes, 1990], with activation levelsreplaced by or inter-
preted asheuristic values(cost estimators).

The automatic derivation of heuristic functions for guiding
the search provides what is probably the first fast and robust
mechanism for carring out means-end analysis in complex
domains.

7 Greedy Selection and Lookahead
Heuristic functions, as cost estimators, have also been found
crucial for focusing the search in problems involving uncer-
tainty and feedback where solutions are not ‘paths’ in the
state space. Solutions to the various models can be all ex-
pressed in terms of control policiesπ that aregreedywith
respect to a given heuristic functionh. A control policyπ is
a function mapping statess ∈ S into actionsa ∈ A(s), and a
policy πh is greedy with respect toh iff πh is the best policy
assuming that the cost-to-go is given byh, i.e.

πh(s) = argmin
a∈A(s)

Qh(a, s) (1)

whereQh(a, s) is the expression of the cost-to-go whose ac-
tual form depends on the model; e.g., for non-deterministic
models isc(a, s) + maxs′∈F (a,s) h(s′), for MDPsc(a, s) +∑

s′∈F (a,s) Pa(s′|s)h(s′), etc. In all cases, if the heuristich
is optimal; i.e.,h = V ∗, the greedy policyπh is optimal as
well [Bellman, 1957; Bertsekas, 1995]. As mentioned above,
the planner that won that the last Probabilistic Planning Com-
petition, used a greedy policy based on an heuristic function
derived ignoring probabilistic information.

Often, if the heuristic estimatorh is good, the greedy pol-
icy πh based on it is good as well. Otherwise, there are two
ways for improving the policyπh without having to consider
the entire state space: one is bylook ahead, the other is by
learning,and both involvesearch. Look-ahead is the strategy
used in 2-player games like Chess that cannot be solved up
to the terminal states; it is a variation of the greedy strategy
πh where theQh(a, s) term is obtained not from the direct
successors ofs but from further descendants. The lookahead
search is not exhaustive either, as valuesh(s′) of the tip nodes
are used to prune the set of nodes considered; a technique
known as alpha-beta search[Newellet al., 1963]. The quality
of the play depends on the search horizon and on the quality
of the value function, which in this case, does not estimate
cost but reward. In all the models, the greedy policyπh is in-
variant to certain types of transformation inh; e.gπh = πh′

if h′ = αh + β for constantsα andβ, α > 0, so the value
scale is not critical. Moreover, in Chess, any transformation
of the heuristic function that preserves the relative ordering



of the states, yields an equivalent policy, even if lookahead is
used.

8 Learning
The second way to improve a greedy policyπh is by adjusting
the heuristic values during the search[Korf, 1990; Bartoet
al., 1995]. More precisely, after applying the greedy action
argmina∈A(s) Qh(a, s) in states, the heuristic valueh(s) in
s is updated to

h(s) := min
a∈A(s)

Qh(a, s) (2)

Interestingly, if h is admissible (h ≤ V ∗), and these up-
dates are performed as the greedy policyπh is simulated,
the resulting algorithm exhibits two properties that distin-
guish it from standard methods: first, unlike a fixed greedy
policy, it will never get trapped into a loop and will even-
tually get to the goal (if the goal is reachable from every
state), and second, after repeated trials, the greedy policyπh

converges to an optimal policy, and the valuesh(s) to the
optimal valuesV ∗(s) (over the relevant states). This algo-
rithm is called Real-Time Dynamic Programming (RTDP) in
[Barto et al., 1995] as it combines a greedy, real-time ac-
tion selecting mechanism, with the improvements brought
about by the updates. Like heuristic search algorithms in
AI but unlike standard DP methods, RTDP can solve large
problems involving uncertainty, without having to consider
the whole state space, provided that a good and admissi-
ble heuristic functionh is used. Moreover, partial feed-
back can be accommodated as well, by performing the search
in ’belief space’. GPT is a planner, that accepts descrip-
tion of problems involving stochastic actions and sensors,
and computes optimal or approximate optimal policies us-
ing a refinement of these methods[Bonet and Geffner, 2000;
2003].

9 Inference
Many problems have a low polynomial complexity, and are
easy for people to solve; e.g., the problem of collecting pack-
ages at various destinations in a city, and delivering them at
some other destinations. This ‘problem’ is not even consid-
ered a problem by people as, unlike puzzles, can be solved
(non-optimally) in a very straightforward way. Yet if the
problem is fed to a planner by describing the actions of driv-
ing the truck from one location to another, picking up and
loading the packages, and so on, the planner would tackle the
problem in the same way it would tackle a puzzle: by means
of search. This search can often be done quite fast, yet like
in Chess, this does not seem to be the way people solve such
problems. Psychologists interested in problem solving, have
focused on puzzles like Towers-of-Hanoi rather than on the
simple problems that people solve every day. The work in
planning however reveals that problems that are easy for peo-
ple are not necessarily easy for a general automated problem
solver. It may be argued that people solve these problems by
using domain-specific knowledge, yet this pushes the prob-
lem one level up: how do people recognize when a problem
falls in a domain, and how many domains are there? Re-
cently we have addressed the related question of whether it is

possible to solve a wide variety of ‘simple’ problems that are
used as benchmarks in planning (including the famous Blocks
World problems), by performing efficient (low polynomial)
inference andno search.To our surprise, we have found that
this is possible[Vidal and Geffner, 2005]. We believe that
there are a number of useful consequences to draw from this
fact, given that most problems faced by real intelligent agents
are not puzzles. In any case, inference and heuristic func-
tions are two sides of the same coin: they both extract useful
knowledge from a domain description and use it to focus the
search, and if possible, to eliminate the search altogether.

10 SAT: Search and Inference in Logic
Logic has played a prominent role in AI as a basis for knowl-
edge representation and programming languages. In recent
years, logic restricted to propositional languages has become
a powerful computational paradigm as well. A variety of
problems can be encoded as SAT problems which are then
fed and solved by powerful SAT solvers: programs that take
a set of clauses (disjunctions of positive or negated atoms),
and determine if the clauses are consistent, and if so, return a
truth-valuation that satisfies all the clauses (a model). While
the SAT problem is intractable, problems involving thousands
of clauses and variables can now be solved[Kautz and Sel-
man, 2005]. Classical planning problems can be mapped
into SAT by translating the problem descriptions into propo-
sitional logic, and fixing a planning horizon: if the theory is
inconsistent, the problem has no solution within the horizon,
else a plan can be read off the model[Kautz and Selman,
1996]. For problems involving non-determinism, the SAT
formulation yields only ‘optimistic’ plans, yet work is un-
derway for reproducing the practical success of SAT in richer
settings. Current SAT algorithms combine search and infer-
ence as well, and are complete. Some of the original algo-
rithms, were based on local search[Selmanet al., 1992], and
were inspired by a neural-network constraint satisfaction en-
gine[Adorf and Johnston, 1990].

11 Domain Compilation
Another recent development in logic relevant for action se-
lection isknowledge compilation[Selman and Kautz, 1996;
Darwiche and Marquis, 2002b]. In knowledge compilation,
a formula is mapped into a logically equivalent formula of
a certain form that makes certain class of operations more
efficient. For example, while testing consistency of a for-
mula is exponential in the size of the formula (in the worst
case), formulas in d-DNNF can be tested in linear time (d-
DNNF is a variation of ‘Disjunctive Normal Form’; see[Dar-
wiche, 2001; 2002]). Moreover, for a formulaT in d-DNNF,
it is possible, in linear-time as well (i.e., very efficiently) to
check the consistency ofT + L for any set of literalsL,
get a model ofT + L, and even count the number of such
models. Of course, compiling a formula into d-DNNF is ex-
pensive, but this expense is worth if the result of the com-
pilation is used many times. The idea of theory compila-
tion has a number of applications in planning that are begin-
ning to get explored. For example, Barret in[Barret, 2004],
compiles planning theories with a fixed planning horizonn



into d-DNNF, and shows that from the compiled theoryit is
possible to obtain plans for arbitrary initial situations and
goals, in linear-time with no search.This is a very inter-
esting idea that makes technical sense of the intuition that
there are many logically equivalent representations, and yet
some representations that are better adapted for a given task.
We are currently exploring a variation of Barret’s idea that
exploits another property of d-DNNF formulasT : the abil-
ity to efficiently compute not only models ofT but alsobest
models, ‘best’ defined in terms of a ranking over the individ-
ual (boolean) variables[Darwiche and Marquis, 2002a]. By
ranking the literals at the horizonn and then using ideas sim-
ilar to ones above, it is possible to get in-linear time, for any
initial situation, the best plan and the rank of the (best) sit-
uation that it leads to. In this way, very quickly,we get an
appraisal and appropriate ‘reaction’ to any situation, with-
out doing any search.It does not take much to relate these
appraisals with the roleemotionsin the selection of actions as
postulated in a number of recent works; e.g.,[Damasio, 1995;
Ketelaar and Todd, 2001; Belavkin, 2001; Evans, 2002;
MacLeod, 2002]. In the view that arises from domain compi-
lation, however, emotions are prior to search, and they are not
used for guiding the search or deliberation, nor are they the
result of deliberation; rather they summarize expected reward
or penalty (as when a deer sees a lion nearby). This view can
account also for the way in which local preferences (ranks)
are quickly assembled to provide an assessment of any situ-
ation (see ”Feeling and Thinking: Preferences Need No In-
ferences” in[Zajonc, 2004]). Computationally, the account is
limited in two ways: it assumes a given fixed planning hori-
zon, and that there is no uncertainty. Still it appears as a good
starting point. In relation to the heuristic view of emotions,
the notion of domain compilation provides an alternative and
probably complementary view: in one case, emotion like an
heuristic, guides the search for best reward, in the other, emo-
tion stands for expected reward, which in the compiled repre-
sentation is computed in linear-time (i.e., very quickly).

12 Summary

We have argued that humans encounter a huge variety of
problems which they must solve using general methods. For
general methods to work, however, they must be able to rec-
ognize and exploit structure. We have then reviewed some
recent techniques from AI planning and problem solving that
accomplish this, either focusing the search for solutions or
bypassing the search altogether. These techniques include the
automatic derivation of heuristic functions, the use of limited
but effective forms of inference, and the compilation of do-
mains, all of which enable a general problem solver to ‘adapt’
to the task at hand. We have also discussed briefly how these
ideas relate to some biologically-motivated action selection
models based on ‘activation levels’ and recent proposals link-
ing emotions and search.

The area of planning and problem solving in Artificial In-
telligence has come a long way, and it is probably time, fol-
lowing Marr’s approach, to use the insights gained by the
study ofwhat is to be computed andhow is to be computed,
for gaining a better understanding of what real-brains actu-

ally compute when making plans and selecting actions. Of
course, there is a lot to be learned, and many other useful and
necessary approaches to the problem, yet some of us hope
that a good theory of AI planning and problem solving, as
Newell, Simon, and others envisioned many years ago, will
be an essential part of the global picture.
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