Model-free, Model-based, and General Intelligence

Hector Geffner ICREA & Universitat Pompeu Fabra Barcelona, Spain

IJCAI-ECAI 2018

Outline

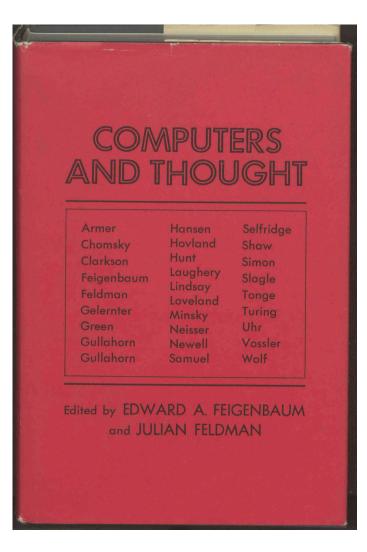
- AI, Programming, and AI programming
- Problem of Generality
- Model-free Learners
- Model-based Solvers (Planners)
- Learners and Solvers: System 1 and System 2?
- Learners and Solvers: Need for Integration, Challenges

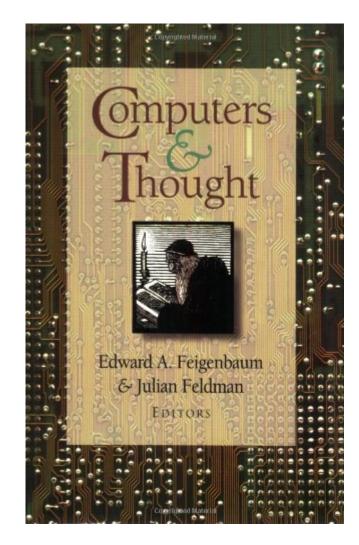
Outline

- AI, Programming, and AI programming
- Problem of Generality
- Model-free Learners
- Model-based Solvers (Planners)
- Learners and Solvers: System 1 and System 2?
- Learners and Solvers: Need for Integration, Challenges

Refs: *Model-free, Model-based, and General Intelligence.* H. Geffner, 2018. **Thanks:** B. Bonet, G. Francès, N. Lipovetzky, M. Ramírez, H. Palacios, ...

Computers and Thought (1963)





Early collection of AI papers describing programs for playing chess and checkers, proving theorems in logic and geometry, planning, etc.

Importance of Programs in Early AI Work

In preface of 1963 edition of the book:

We have tried to focus on papers that report results. In this collection, the papers . . . describe actual **working computer programs** . . . Because of the limited space, we chose to avoid the more speculative . . . pieces.

In preface of 1995 AAAI edition

A critical selection criterion was that the paper had to describe . . . a running computer program . . . All else was talk, philosophy not science . . . (L)ittle has come out of the "talk".

AI, Programming, and AI Programming

Many of the key AI contributions in 60s, 70s, and early 80s had to do with **programming** and the **representation of knowledge** in **programs**:

- Lisp (Functional Programming)
- Prolog (Logic Programming)
- Rule-based Programming

. . .

- Interactive Programming Environments and Lisp Machines
- Frame, Scripts, Semantic Networks
- Expert Systems Shells and Architectures

Programming and Problem of Generality

- For writing an AI dissertation in the 60s, 70s and 80s, it was common to:
 - $\triangleright\,$ pick up a task and domain X
 - analyze/introspect/find out how task is solved
 - capture this reasoning in a program
- The dissertation was then
 - a theory about X (humor, story understanding, analogy, etc), and
 a program implementing the theory, tested over a few examples.
- Great ideas came out from this work but . . . a methodological problem:
 - Programs written by hand were not robust or general

From Programs to Learners and Solvers

- Limitation led to **methodological shift**:
 - from writing programs for ill-defined problems . . .
 - to designing algorithms for well-defined mathematical tasks

From Programs to Learners and Solvers

- Limitation led to **methodological shift**:
 - from writing programs for ill-defined problems . . .
 - to designing algorithms for well-defined mathematical tasks
- New general programs **learners** and **solvers** have a **crisp functionality**: both can be seen as computing **functions** that map inputs into outputs

Input
$$x \Longrightarrow |$$
 FUNCTION $f | \Longrightarrow Output f(x)$

• The algorithms are **general** in the sense that they are not tied to particular examples but to classes of **models** and **tasks** expressed in **mathematical form**

Learners

Input
$$x \Longrightarrow [$$
FUNCTION $f] \Longrightarrow Output f(x)$

- In deep learning (DL) and deep reinforcement learning (DRL), training results in function f_{θ}
- f_θ given by structure of neural network and adjustable parameters θ
 In DL, input x may be an image and output f_θ(x) a classification label
 In DRL, input x may be state of game, and output f_θ(x), value of state
- Parameters θ learned by **minimizing error function**
 - In DL, error depends on inputs and target outputs in training set
 In DRL, error depends on value of states and successor states
- Most common optimization algorithm is stochastic gradient descent

Learners: Success and Limitations

Input
$$x \Longrightarrow [FUNCTION f] \Longrightarrow Output f(x)$$

- Excitement about AI due to successes in DL and DRL
 - Breakthroughs in image understanding, speech recognition, Go, . . .
 - Superhuman performance in Chess and Go from self-play alone
- The basic ideas underlying DL and DRL not new but from 80s and 90s
 - Recently, more CPU power, more data, deeper nets, attractive problems
- One key limitation: Fixed input size x
 - ▶ No problem for learning to play Chess or Go over **fixed size board**
 - But critical for tackling arbitrary instances of ... Blocks World

Solvers

Input
$$x \Longrightarrow$$
 FUNCTION $f \implies Output f(x)$

• Solvers derive output f(x) for given input x from model:

- ▷ **SAT:** x is a formula in CNF, f(x) = 1 if x satisfiable, else f(x) = 0
- \triangleright Classical planner: x is a planning problem P, and f(x) is plan that solves P
- **Bayesian net:** x is a query over Bayes Net and f(x) is the answer
- Constraint satisfaction, Markov decision processes, POMDPs, ...
- Generality: Solvers not tailored to particular examples
- **Expressivity:** Some models very expressive, "AI-Complete" (POMDPs)
- **Complexity:** Computation of f(x) is (NP) hard; |x| not bounded
- Challenge: Solvers shouldn't break just because x has many variables
- Methodology: Empirical, benchmarks, competitions, . . .

Solvers vs. Learners

Input
$$x \Longrightarrow \left| \text{FUNCTION } f \right| \Longrightarrow \text{Output } f(x)$$

- Learners require experience over related problems x but then fast
 They compute function f from training, then apply it
- Solvers deal with completely new problems x but need to think
 - \triangleright They compute f(x) for each input x from scratch

Thinking is hard but **computational limits** are important source of insight **Next:** look at some powerful computational ideas in **planning**

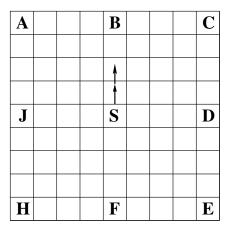
Finding Plans in Huge Mazes: Relaxation, Heuristics

Old Idea: If you don't know how to solve P, **solve simpler problem** P', and use solution of P' for solving P (Polya, Minsky, Pearl)

- In monotonic relaxation P', effects of actions on variables made monotonic
- Monotonicity makes relaxation P' decomposable and therefore tractable
- Heuristic h(s) in P set to cost of plan from s in relaxation P'

Heuristic obtained and used to solve any problem P from scratch No experience required in problems related to P

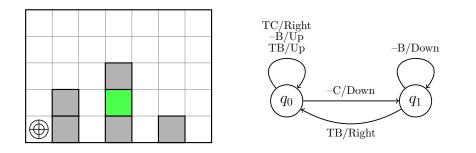
Goal Recognition: A Classification Problem



- Task: infer agent goal $G \in \mathcal{G}$ from observations O on behavior
- Bayes' rule: P(G|O) = P(O|G) P(G)/P(O), priors P(G) assumed given
- Likelihood P(O|G) set as **monotonic function** f of difference between:
 - ▷ c⁻(G): cost of reaching G with plan that does not comply with observations
 ▷ c⁺(G): cost of reaching G with plan that complies with observations

P(G|O) computed using Bayes' rule and $2|\mathcal{G}|$ calls to planner No experience required in related problems

Generalized Planning and One-Shot Learning



- Task: move 'eye' (mark) one cell at a time til green block found
- Observables: Whether marked cell contains a green block (G), non-green block (B), or neither (C); and whether on table (T) or not (-)
- Controller derived using classical planner over transformed problem where
 ▷ one action b = ⟨q, o, a, q'⟩ for each possible controller edge
- Generality: Derived controller solves not just given instance but any instance;
 i.e., any number of blocks and any configuration

Generalized plan for problem x is not f(x) but function f itself

Polynomial Algorithms for Exponential Spaces: Width

- IW(1) is a **breadth-first search** that **prunes** states *s* that don't make a feature true for first time in the search, from given **set of boolean features** *F*
- IW(k) is IW(1) but over set F^k made up of conjunctions of k features from F
 - ▷ Most domains have small width $w \leq 2$ when goals are single atoms
 - > Any such instances solved optimally by IW(w) in low poly time

Polynomial Algorithms for Exponential Spaces: Width

- IW(1) is a **breadth-first search** that **prunes** states *s* that don't make a feature true for first time in the search, from given **set of boolean features** *F*
- IW(k) is IW(1) but over set F^k made up of conjunctions of k features from F
 - \triangleright Most domains have small width $w \leq 2$ when goals are single atoms
 - > Any such instances solved optimally by IW(w) in low poly time

- IW(k) can work with **simulators**. No PDDL or goal needed. Variants:
 - BFWS(R): SOTA planning algorithm which doesn't use action structure
 Rollout IW(1): fast on-line planner that plays Atari from screen pixels

Learners and Solvers: Contrasts

- Rollout IW(1) planner and DQN learner perform comparably well in Atari
- They illustrate key difference between learners and solvers:
 - DQN requires lots of training data and time, and then plays very fast
 Rollout IW(1) plays out of the box but thinking a bit before each move

Learners and Solvers: Contrasts

- Rollout IW(1) planner and DQN learner perform comparably well in Atari
- They illustrate key difference between learners and solvers:
 - DQN requires lots of training data and time, and then plays very fast
 - \triangleright Rollout IW(1) plays out of the box but thinking a bit before each move

This is a general characteristic:

- Learners require experience over related problems x but then are fast
 They compute function f from training, then apply it
- Solvers deal with completely new problems x but need to think
 - ▷ They compute f(x) for each input x from scratch

Learners and Solvers: System 1 and System 2?

Dual process accounts of the human mind assume two processes (Daniel Kahneman: Thinking, Fast and Slow):

System 1 (Intuitive Mind) fast associative unconscious effortless parallel specialized

System 2 (Analytical Mind)

> slow deliberative conscious effortful serial general

Learners?

Solvers?

. . .

Learners and Solvers: Challenges (1)

- Key challenge: General two-way integration of System 1 and System 2 inference in AI systems; i.e. learners and solvers
- AlphaZero that learns Chess and Go by pure self-play is effective integration of a learner and a solver
 - ▶ AlphaZero learns by imitating and improving (MCTS) planner used as teacher

• Yet AlphaZero can do Chess but not **much simpler** . . . Blocks World

Learners and Solvers: Challenges (1)

- Key challenge: General two-way integration of System 1 and System 2 inference in AI systems; i.e. learners and solvers
- AlphaZero that learns Chess and Go by pure self-play is effective integration of a learner and a solver
 - ▶ AlphaZero learns by imitating and improving (MCTS) planner used as teacher

- Yet AlphaZero can do Chess but not much simpler . . . Blocks World
 - "Doing" BW is near 100% coverage on arbitrary instances with general algorithm; not 68% coverage on selected instances with 7 blocks!

Learners and Solvers: Challenges (2)

For general and synergistic integration of learners and solvers:

- Learning the state variables from streams of actions and observations
- Learning useful general features for planning
- Model learning: explanation and accountability require models
- Learning finite-size abstract representations for general plans

. . .

• Al far from human-level intelligence yet can be used for good or ill

- Al far from human-level intelligence yet can be used for good or ill
- Asilomar AI principles good and timely but difficult to enforce

- Al far from human-level intelligence yet can be used for good or ill
- Asilomar Al principles good and timely but difficult to enforce
- Al aligned with human values nice but why not tech, politics, economics?

- Al far from human-level intelligence yet can be used for good or ill
- Asilomar Al principles good and timely but difficult to enforce
- Al aligned with human values nice but why not tech, politics, economics?
- Markets and politics focused on bottom line and aimed at our System 1

- Al far from human-level intelligence yet can be used for good or ill
- Asilomar AI principles good and timely but difficult to enforce
- Al aligned with human values nice but why not tech, politics, economics?
- Markets and politics focused on bottom line and aimed at our System 1
- Life in modern world needs System 2 informed by facts and common good

- Al far from human-level intelligence yet can be used for good or ill
- Asilomar Al principles good and timely but difficult to enforce
- Al aligned with human values nice but why not tech, politics, economics?
- Markets and politics focused on bottom line and aimed at our System 1
- Life in modern world needs System 2 informed by facts and common good
- If we want good AI, we need a good and decent society