
Width and Serialization of Classical Planning Problems
Nir Lipovetzky1 and Hector Geffner2

Abstract. We introduce a width parameter that bounds the com-
plexity of classical planning problems and domains, along with a
simple but effective blind-search procedure that runs in time that is
exponential in the problem width. We show that many benchmark
domains have a bounded and small width provided that goals are re-
stricted to single atoms, and hence that such problems are provably
solvable in low polynomial time. We then focus on the practical value
of these ideas over the existing benchmarks which feature conjunc-
tive goals. We show that the blind-search procedure can be used for
both serializing the goal into subgoals and for solving the resulting
problems, resulting in a ‘blind’ planner that competes well with a
best-first search planner guided by state-of-the-art heuristics. In ad-
dition, ideas like helpful actions and landmarks can be integrated as
well, producing a planner with state-of-the-art performance.

1 INTRODUCTION
Various approaches have been developed for explaining the gap be-
tween the complexity of planning [5], and ability of current plan-
ners to solve most existing benchmarks in a few seconds [12, 19].
Tractable planning has been devoted to the identification of planning
fragments that due to syntactic or structural restrictions can be solved
in polynomial time; fragments that include for example problems
with single atom preconditions and goals, among others [5, 2]. Fac-
tored planning has appealed instead to mappings of planning prob-
lems into Constraint Satisfaction Problems, and the notion of width
over CSPs [1, 4]. The width of a CSP measures the number of vari-
ables that have to be collapsed to ensure that the graph underlying the
CSP becomes a tree [8, 7]. The complexity of a CSP is exponential
in the problem width. A notion of width for classical planning using
a form of Hamming distance was introduced in [6], where the dis-
tance is set to the number of problem variables whose value needs to
be changed in order to increase the number of achieved goals. These
proposals, however, do not appear to explain the apparent simplicity
of the standard domains.

A related thread of research has aimed at understanding the per-
formance of modern heuristic search planners by analyzing the char-
acteristics of the optimal delete-relaxation heuristic h+ that planners
approximate for guiding the search for plans [14, 11]. For instance,
the lack of local minima for h+ implies that the search for plans (and
hence the global minimum of h+) can be achieved by local search,
and this local search is tractable when the distance to the states that
decrement h+ is bounded by a constant. This type of analysis has
shed light on the characteristics of existing domains where heuristic
search planning is easy, although it doesn’t address explicitly the con-
ditions under which the heuristic h+ is easy to compute, nor whether
it’s the use of this heuristic that makes these domains easy.

1 DTIC Universitat Pompeu Fabra, Spain, email: nir.lipovetzky@upf.edu
2 ICREA & UPF, Spain, email: hector.geffner@upf.edu

The aim of this paper is to explore a new width notion for planning
that can be useful both theoretically and practically. More precisely,
the contributions of the paper are:

1. a new width notion for planning problems and domains;
2. a proof that many of the existing domains have a bounded and low

width when goals are restricted to single atoms;
3. a simple, blind-search planning algorithm (IW) that runs in time

exponential in the problem width;
4. a blind-search planner that uses IW for serializing a problem into

subproblems and for solving the subproblems, which is compet-
itive with a best-first search planner using state-of-the-art heuris-
tics;

5. a state-of-the-art planner that integrates new ideas and old.

The organization of the paper follows this structure, preceded by a
review of basic notions in planning.

2 PLANNING
The classical model for planning S = 〈S, s0, SG, A, f〉 is made up
of a finite set of states S, an initial state s0, a set of goal states SG,
and actions a ∈ A(s) that deterministically map one state s into
another s′ = f(a, s), where A(s) is the set of actions applicable in
the state s. The solution to a classical planning model is a sequence of
actions a0, . . . , am that generates a state sequence s0, s1, . . . , sm+1

such that ai ∈ A(si), si+1 = f(ai, si), and sm+1 ∈ SG.
A classical planning problem P defines a classical model in com-

pact form through a set of variables. We assume a Strips language
P = 〈F, I,O,G〉, where F is the set of boolean variables, atoms,
or fluents, I is the set of atoms characterizing the initial state, O is
the set of actions, and G is the set of goal atoms. All definitions be-
low extend easily to other planning languages provided that states are
valuations over a set of variables.

We assume that action costs are all 1, so that plan cost is plan
length, and the optimal plans are the shortest ones. We write P (t) to
denote the planning problem that is like P but with goal t. The cost
of the goal t in P is the cost of an optimal plan for P (t).

3 WIDTH
A state s is reachable from the initial state s0 = I in P , if there
is a state trajectory s0, s1, . . . , sn, such that si+1 is a successor of
si for some action ai, and s = sn. Since this reachability relation is
exponential in the number of atoms, we define a different reachability
relation over tuples (conjunctions) of atoms t of bounded size. The
key question is when a tuple t′ can be regarded as a ‘successor’ of a
tuple t in P . If this is taken to represent the presence of an action a
in P such that the regression of t through a is in t′, the reachability
relation on tuples ends up being too weak. A stronger reachability

relation on tuples can be obtained if we assume that both t and t′

are achieved optimally. We will define indeed that t′ is a successor
of t if every optimal plan for t can be extended into an optimal plan
for t′ by just adding one action. In this way, the ‘side-effects’ of the
optimal plans for t can be used to achieve t′ optimally from t. This is
formalized below in terms of tuple graphs, where T i stands for the
collection of tuples from P with size no greater than a given positive
integer i:

Definition 1 For P = 〈F, I,O,G〉 , Gi is the graph with vertices
from T i defined inductively as follows:

1. t is a root vertex in Gi iff t is true in I ,
2. t→ t′ is a directed edge in Gi iff t is in Gi and for every optimal

plan π for P (t) there is an action a ∈ O such that π followed by
a is an optimal plan for P (t′).

In other words, the presence of the tuple t′ of at most i atoms in
the graph Gi indicates that either t′ is true in I or that there is another
tuple t of at most i atoms in Gi such that all the optimal plans π for t
yield optimal plans for t′, once a suitable action a is appended to π.

The graph Gi is acyclic because an edge t → t′ implies that the
optimal cost for achieving t′ is the optimal cost of achieving t plus 1.
Since we are associating plan cost with plan length, this means also
that a tuple at depth k in the graph has optimal cost k.

Let us now say that a goal formula G1 implies goal formula G2 in
a problem P , if all the optimal plans for G1 are also optimal plans
for G2. Notice that this is not the standard logical implication that
requires the formula G1 ⊃ G2 to be true in all reachable states, and
hence, an invariant. For example, the goal G1 = {hold(b)} implies
the goal G2 = {clear(a)} in Blocks World if on(b, a) is true ini-
tially, yet hold(b) ⊃ clear(a) is not an invariant.

Provided with this notion of implication, we define the width of a
planning problem P and, more generally, the width of an arbitrary
goal formula φ relative to P as follows:

Definition 2 For a formula φ over the fluents in P that is not true in
the initial situation I , the width of φ relative to P is the min w such
that Gw contains a tuple that implies φ. If φ is true in I , its width is
0.

Definition 3 The width of a planning problem P ,w(P), is the width
of its goal G relative to P .

As in the case of graphical models, the width of a problem give us
a bound on the complexity of solving the problem:

Theorem 4 If w(P) = i, P can be solved optimally in time that is
exponential in i.

Of course, the crucial question is whether there are interesting
planning problems that have a bounded, and hopefully small width.
The answer is yes. Indeed, most domain benchmarks appear to have
a small width independent of the size of the problems, provided that
the goalG is restricted to a single atom. Of course, this result doesn’t
settle the complexity of the existing benchmarks where goals are
not single atoms, yet as far as we know, it’s the first formal result
that places the complexity of these benchmarks squarely on the goal
structure, and not on the domain structure. That is, if a domain has a
low width when goals are single atoms, then when a domain instance
is not easy, it can only be due to conjunctive goals.

We state the result about the width of a few domains. For most
other benchmark domains, the same result seems to hold, but we

have not carried out the proofs. Later on, however, we will report
experiments that bear on this issue.

Theorem 5 The domains Blocks, Logistics, and n-puzzle have a
bounded width independent of the problem size and initial situation,
provided that the goals are restricted to single atoms.

It turns out indeed that for single atom goals, the width of Blocks,
Logistics and n-puzzle is at most 2. We omit the proofs for lack of
space, but for illustration purposes we prove w(G) = 1 for any goal
G = ontable(b) in Blocks.

Clearly, if G is true in the initial situation, the tuple G will belong
to the graph Gi for i = 1. Thus, assume that G is not true initially,
and let b1, . . . , bn−1 be the blocks on top of b, starting from the top,
and let b = bn. We can then just show that the path

clear(b1), hold(b1), ontable(b1), hold(b2), . . . , ontable(bn)

makes it into G1. For a path t0, t1, . . . , tn to be in G1 when t0 is
true in the initial situation, we just need to show that any optimal
plan for ti can be extended by means of a single action into an op-
timal plan for ti+1, i = 0, . . . , n − 1. This is trivial in this case,
as the optimal plans for hold(bi) can always be extended with the
action putdown(bi) into optimal plans for ontable(bi), while the
optimal plans for ontable(bi) from the above initial situation can all
be extended with the action unstack(bi+1, bi+2) into optimal plans
for hold(bi+1). It’s important to notice that without the restriction to
optimal plans this reasoning would not get through.

4 BASIC ALGORITHM: PRUNED
BREADTH-FIRST

We turn now to the planning algorithm that achieves the complex-
ity bounds expressed by Theorem 4. The algorithm, called Iter-
ated Width search or IW, consists of a sequence of calls IW(i) for
i = 0, 1, 2, . . . over a problem P until the problem is solved. Each
iteration IW(i) is an i-width search that is complete for problems
whose width is bounded by i and has complexity is O(ni), where n
is the number of problem variables. If P is solvable and its width is
w, IW will solve P in at most w + 1 iterations with a complexity
O(nw). IW(i) is a plain forward-state breadth-first search with just
one change: right after a state s is generated, the state is pruned if it
doesn’t pass a simple novelty test that depends on i.

Definition 6 A newly generated state s produces a new tuple of
atoms t iff s is the first state generated in the search that makes t
true. The size of the smallest new tuple of atoms produced by s is
called the novelty of s. When s does not generate a new tuple, it’s
novelty is set to n+ 1 where n is the number of problem variables.

In other words, if s is the first state generated in all the search that
makes an atom p true, its novelty is 1. If s does not generate a new
atom but generates a new pair (p, q), its novelty is 2, and so on. Like-
wise, if s does not generate a new tuple at all because the same state
has been generated before, then its novelty is set to n+1. The higher
the novelty measure, the less novel the state. The iterations IW(i)
are plain breadth-first searches that treat newly generated states with
novelty measure greater than i as if they were ‘duplicate’ states:

Definition 7 IW(i) is a breadth-first search that prunes newly gen-
erated states when their novelty measure is greater than i.

Table 1. Effective width of single goal instances obtained from existing
benchmarks by splitting problems with N atomic goals into N problems
with single goals. I is number of resulting instances. The other columns

show percentage of instances with effective width 1, 2, or greater.
Domain I we = 1 we = 2 we > 2

8puzzle 400 55% 45% 0%
Barman 232 9% 0% 91%
Blocks World 598 26% 74% 0%
Cybersecure 86 65% 0% 35%
Depots 189 11% 66% 23%
Driver 259 45% 55% 0%
Elevators 510 0% 100% 0%
Ferry 650 36% 64% 0%
Floortile 538 96% 4% 0%
Freecell 76 8% 92% 0%
Grid 19 5% 84% 11%
Gripper 1275 0% 100% 0%
Logistics 249 18% 82% 0%
Miconic 650 0% 100% 0%
Mprime 43 5% 95% 0%
Mystery 30 7% 93% 0%
NoMystery 210 0% 100% 0%
OpenStacks 630 0% 0% 100%
OpenStacksIPC6 1230 5% 16% 79%
ParcPrinter 975 85% 15% 0%
Parking 540 77% 23% 0%
Pegsol 964 92% 8% 0%
Pipes-NonTan 259 44% 56% 0%
Pipes-Tan 369 59% 37% 3%
PSRsmall 316 92% 0% 8%
Rovers 488 47% 53% 0%
Satellite 308 11% 89% 0%
Scanalyzer 624 100% 0% 0%
Sokoban 153 37% 36% 27%
Storage 240 100% 0% 0%
Tidybot 84 12% 39% 49%
Tpp 315 0% 92% 8%
Transport 330 0% 100% 0%
Trucks 345 0% 100% 0%
Visitall 21859 100% 0% 0%
Woodworking 1659 100% 0% 0%
Zeno 219 21% 79% 0%
Summary 37921 37.0% 51.3% 11.7%

Notice that IW(n), when n is the number of atoms in the problem,
just prunes truly duplicate states and it is therefore complete. On the
other hand, IW(i) for lower i values prunes many states and is not.
Indeed, the number of states not pruned in IW(1) is O(n) and sim-
ilarly, the number of states not pruned in IW(i) is O(ni). Likewise,
since the novelty of a state is never 0, IW(0) prunes all the children
states of the initial state s0, and thus IW(0) solves P iff the goal is
true in the initial situation. The resulting planning algorithm IW is
just a series of i-width searches IW(i), for increasing values of i:

Definition 8 Iterated Width (IW) calls IW(i) sequentially for i =
0, 1, 2, . . . until the problem is solved or i exceeds the number of
problem variables.

Iterated Width (IW) is thus a blind-search algorithm similar to It-
erative Deepening (ID) except for two differences. First, each itera-
tion is a pruned depth-first search in ID, and a pruned breadth-first
search in IW. Second, each iteration increases pruning depth in ID,
and pruning width or novelty in IW.

From the considerations above it is straightforward to show that
IW like ID is sound and complete. On the other hand, while IW(w)
is optimal for a problem P of width w, IW is not necessarily so. The
reason is that IW may solve P in an iteration IW(i) for i smaller than
w.3

3 As an illustration, the goal G of width 2 is achieved non-optimally by IW(1)
when I = {p1, q1} and the actions are ai : pi → pi+1 and bi : qi →
qi+1 for i = 1, . . . , 5, along with b : p6 → G and c : p3, q3 → G.
Indeed, IW(2) achieves G optimally at cost 5 using the action c, yet this
action is never applied in IW(1), where states that result from applying the
actions ai when qj is true for j > 1 are pruned, and states that result from
applying the actions bi when pj is true for j > 1 are pruned too. As a
result, IW(1) prunes the states with pairs such as (p3, q2) and (p2, q3),

Table 2. Blind-search algorithm IW compared with two other blind-search
algorithms: Iterative Deepening (ID) and Breadth-First Search (BrFS).

Numbers report coverage over benchmark domains with single atomic goals.
Also included for comparison the figure for heuristic Greedy Best First

Search (GBFS) with hadd.
Instances IW ID BrFS GBFS + hadd

37921 34627 9010 8762 34849

Nonetheless the completeness and optimality of IW(w) for prob-
lems with width w provides the right complexity bound for IW:

Theorem 9 For solvable problems P , the time and space complexity
of IW are exponential in w(P).

It’s important to realize that this bound is achieved without knowing
the actual width of P . This follows from the result below, whose
proof we omit for lack of space:

Theorem 10 For a solvable problem P with width w, IW(w) solves
P optimally in time exponential in w.

The algorithm IW(w) is guaranteed to solve P if w(P) = w,
yet as discussed above, the algorithm IW does not assume that this
width is known and thus makes the IW(i) calls in order starting from
i = 0. We refer to the min value of i for which IW(i) solves P as
the effective width of P , we(P), which is never higher than the real
width w(P).

The effective width we(P) provides an approximation of the ac-
tual width w(P). While proving formally that most benchmark do-
mains have bounded width for single atom goals is tedious, we have
run the algorithm IW to compute the effective width of such goals.
The results are shown in Table 1. We tested domains from previous
IPCs. For each instance with N goal atoms, we created N instances
with a single goal, and run IW over each one of them. The total num-
ber of instances is 37921. For each domain we show the total number
of single goal instances, and the percentage of instances that have ef-
fective widths we equal to 1, 2, or greater than 2. The last row in
the table shows the average percentage over all domains: 37% with
we = 1, 51% with we = 2, and less than 12% with we > 2. That
is, on average, less than 12% of the instances have effective width
greater than 2. Actually, in most domains all the instances have ef-
fective width at most 2, and in four domains, all the instances have ef-
fective width 1. The instances with a majority of atomic goals with an
effective width greater than 2 are from the domains Barman, Open-
stacks, and Tidybot (the first and last from the 2011 IPC).

Iterated Width (IW) is a complete blind-search algorithm like It-
erative Deepening (ID) and Breadth-First Search (BrFS). We have
also tested the three algorithms over the set of 37921 single goal in-
stances above. The results are shown in Table 2 . With memory and
time limits of 2GB and 2h, ID and BrFS solve less than 25% of the
instances, while IW solves more than 90%, which is almost as many
as a Greedy Best First Search guided by the additive heuristic (also
shown in the Table). The result suggests that IW manages to exploit
the low width of these problems much better than the other blind-
search algorithms. We will see below that a simple extension suffices
to make IW competitive with a heuristic planner over the standard
benchmark instances that feature joint goals.

and does not generate states with the pair (p3, q3), which are required for
reaching G optimally. IW(1) however reaches G at the non-optimal cost 7
using the action b.

5 SERIALIZATION
The fact that single goal atoms can be achieved quite effectively
in most benchmarks domains by a pruned breadth-first search that
does not look at the goal in any way, suggests that the complexity
of benchmarks comes from conjunctive goals. Indeed, this has been
the intuition in the field of planning since its beginnings where goal
decomposition was deemed as a crucial and characteristic technique.
The analysis above formalizes this intuition by showing that the ef-
fective width of single atom goals in existing benchmarks is low.
This old intuition also suggests that the power of planners that can
handle single goals efficiently can be exploited for conjunctive goals
through some form of decomposition.

Serialized Iterated Width is a search algorithm that uses the iter-
ated width searches both for constructing a serialization of the prob-
lem P = 〈F, I,O,G〉 and for solving the resulting subproblems.
While IW is a sequence of i-width searches IW(i), i = 0, 1, . . . over
the same problem P , SIW is a sequence of IW calls over |G| sub-
problems Pk, k = 1, . . . , |G|. The definition of SIW takes advantage
of the fact that IW is a blind-search procedure that doesn’t need to
know the goals of the problem in advance; it just needs to recognize
them in order to stop. Thanks to this feature IW is used both for de-
composing P into the sequence of subproblems Pk and for solving
each one of them. The plan for P is the concatenation of the plans
obtained for the subproblems.

Definition 11 Serialized Iterated Width (SIW) over P =
〈F, I,O,G〉 consists of a sequence of calls to IW over the
problems Pk = 〈F, Ik, O,Gk〉, k = 1, . . . , |G|, where

1. I1 = I ,
2. Gk is the first consistent set of atoms achieved from Ik such that
Gk−1 ⊂ Gk ⊆ G and |Gk| = k; G0 = ∅

3. Ik+1 represents the state where Gk is achieved, 1 < k < |G|.

In other words, the k-th subcall of SIW stops when IW generates a
state sk that consistently achieves k goals from G: those achieved
in the previous subcall and a new goal from G. The same is re-
quired from the next subcall that starts at sk. The state sk consis-
tently achieves Gk ⊆ G if sk achieves Gk, and Gk does not need to
be undone in order to achieve G. This last condition is checked by
testing whether hmax(sk) = ∞ is true in P once the actions that
delete atoms from Gk are excluded [3]. Notice that SIW does not use
heuristic estimators to the goal, and does not even know what goal
Gk is when IW is invoked on subproblem Pk: it finds this out when
IW generates a set of atoms G′ such that Gk−1 ⊂ G′ ⊆ G and
|G′| = k. It then sets Gk to G′. This is how SIW manages to use IW
for both constructing the serialization and solving the subproblems.

The SIW algorithm is sound and the solution to P can be obtained
by concatenating the solutions to the problems P1, . . . , Pm, where
m = |G|. Like IW, however, SIW does not guarantee optimality.
Likewise, while the IW algorithm is complete, SIW is not. The reason
is that the subgoal mechanism implicit in SIW commits to interme-
diate states from which the goal may not be reachable. Of course, if
there are no dead-ends in the problem, SIW is complete.

We have compared experimentally the blind-search algorithm SIW
to a baseline heuristic search planner using a Greedy Best First
Search (GBFS) and the additive heuristic [3]. Neither planner is state-
of-the-art, as neither uses key techniques such as helpful actions or
landmarks [12, 19]. Still, the comparison shows that the non-goal ori-
ented form of pruning in IW and the simple form of decomposition
in SIW are quite powerful; as powerful indeed, as the best heuristic
estimators.

Table 3. Blind-Search SIW vs. Heuristic GBFS over real benchmarks (with
joint goals). I is number of instances, S is number of solved instances, Q is

average plan length, T is average time in seconds. M/A we stand for max and
avg effective width per domain. Shown in bold are the numbers S, Q, or T

that one planner improves over the other by more than 10%.
Serialized IW (SIW) GBFS + hadd

Domain I S Q T M/Awe S Q T
8puzzle 50 50 42.34 0.64 4/1.75 50 55.94 0.07
Barman 20 1 – – – – –
Blocks World 50 50 48.32 5.05 3/1.22 50 122.96 3.50
Cybersecure 30 – – – – – –
Depots 22 21 34.55 22.32 3/1.74 11 104.55 121.24
Driver 20 16 28.21 2.76 3/1.31 14 26.86 0.30
Elevators 30 27 55.00 13.90 2/2.00 16 101.50 210.50
Ferry 50 50 27.40 0.02 2/1.98 50 32.88 0.03
Floortile 20 – – – – – –
Freecell 20 19 47.50 7.53 2/1.62 17 62.88 68.25
Grid 5 5 36.00 22.66 3/2.12 3 195.67 320.65
Gripper 50 50 101.00 3.03 2/2.00 50 99.04 0.36
Logistics 28 28 54.25 2.61 2/2.00 28 56.25 0.33
Miconic 50 50 42.44 0.08 2/2.00 50 42.72 0.01
Mprime 35 27 6.65 84.80 2/2.00 28 17.92 204.76
Mystery 30 27 6.47 42.89 2/1.19 28 7.60 15.44
NoMystery 20 – – – 6 – –
OpenStacks 30 13 105.23 0.53 3/1.80 7 112.42 6.49
OpenStacksIPC6 30 26 29.43 108.27 4/1.48 30 32.14 23.86
ParcPrinter 30 9 16.00 0.06 3/1.28 30 15.67 0.01
Parking 20 17 39.50 38.84 2/1.14 2 68.00 686.72
Pegsol 30 6 16.00 1.71 4/1.09 30 16.17 0.06
Pipes-NonTan 50 45 26.36 3.23 3/1.62 25 113.84 68.42
Pipes-Tan 50 35 26.00 205.21 3/1.63 14 33.57 134.21
PSRsmall 50 25 13.79 28.37 4/2.27 44 18.04 4.99
Rovers 40 27 38.47 108.59 2/1.39 20 67.63 148.34
Satellite 20 19 38.63 216.69 2/1.29 20 34.11 8.44
Scanalyzer 30 26 26.81 33.96 2/1.16 28 28.50 129.42
Sokoban 30 3 80.67 7.83 3/2.58 23 166.67 14.30
Storage 30 25 12.62 0.06 2/1.48 16 29.56 8.52
Tidybot 20 7 42.00 532.27 3/1.81 16 70.29 184.77
Tpp 30 24 82.95 68.32 3/2.03 23 116.45 199.51
Transport 30 21 54.53 94.61 2/2.00 17 70.82 70.05
Trucks 30 2 31.00 4.58 2/2.00 8 34.50 14.08
Visitall 20 19 199.00 0.91 1/1.00 3 2485.00 174.87
Woodworking 30 30 21.50 6.26 2/1.07 12 42.50 81.02
Zeno 20 19 34.89 166.84 2/1.83 20 35.11 101.06
Summary 1150 819 44.4 55.01 2.5/1.6 789 137.0 91.05

SIW and GBFS are both written in C++ and use Metric-FF as an
ADL to Propositional STRIPS compiler [10]. The experiments were
conducted on a dual-processor running at 2.33 GHz and 2 GB of
RAM. Processes time or memory out after 30 minutes or 2 GB. The
results are summarized in Table 3 . Out of 1150 instances, SIWsolves
30 problems more, it’s usually faster, and produces shorter solutions.

Table 3 shows also the highest and average effective widths of the
subproblems that result from the serializations generated by SIW.
The maximal effective width is 4, which occurs in two domains:
8puzzle and PSRsmall. On average, however, the effective width is
between 1 and 2, except for four domains with effective widths be-
tween 2 and 3: Sokoban (2.58), PSRsmall (2.27), Grid (2.12), and
TPP (2.03).

6 STATE-OF-THE-ART PERFORMANCE
While the blind-search SIW procedure competes well with a greedy
best-first search planner using the additive heuristic, neither planner
is state-of-the-art. Since state-of-the-art performance is important in
classical planning, we show next that it is possible to deliver such
performance by integrating the idea of novelty that arises from width
considerations, with known techniques such as helpful actions, land-
marks, and heuristics. For this we switch to a plain forward-search
best-first search planner guided by an evaluation function f(n) over
the nodes n given by

f(n) = novelha(n) (1)

where novelha(n) is a measure that combines novelty and helpful
actions, as defined below. In addition, ties are broken lexicographi-

Table 4. BFS(f) vs. LAMA, FF, and PROBE. I is number of instances, S is number of solved instances, Q is average plan length, T is average time in
seconds. T and Q averages computed over problems solved by all planners except FF, excluded because of the large gap in coverage. Numbers in bold show

performance that is at least 10% better than the other planners.
BFS(f) PROBE LAMA’11 FF

Domain I S Q T S Q T S Q T S Q T
8puzzle 50 50 45.45 0.20 50 61.45 0.09 49 58.24 0.18 49 52.61 0.03
Barman 20 20 174.45 281.28 20 169.30 12.93 20 203.85 8.39 – – –
Blocks World 50 50 54.24 2.40 50 43.88 0.23 50 88.92 0.41 44 39.36 66.67
Cybersecure 30 28 39.23 70.14 24 52.85 69.22 30 37.54 576.69 4 29.50 0.73
Depots 22 22 49.68 56.93 22 44.95 5.46 21 61.95 46.66 22 51.82 32.72
Driver 20 18 48.06 57.37 20 60.17 1.05 20 46.22 0.94 16 25.00 14.52
Elevators 30 30 129.13 93.88 30 107.97 26.66 30 96.40 4.69 30 85.73 1.00
Ferry 50 50 32.94 0.03 50 29.34 0.02 50 28.18 0.31 50 27.68 0.02
Floortile 20 7 43.50 29.52 5 45.25 71.33 5 49.75 95.54 5 44.20 134.29
Freecell 20 20 64.39 13.00 20 62.44 41.26 19 68.94 27.34 20 64.00 22.95
Grid 5 5 70.60 7.70 5 58.00 9.64 5 70.60 4.84 5 61.00 0.27
Gripper 50 50 101.00 0.37 50 101.00 0.06 50 76.00 0.36 50 76.00 0.03
Logistics 28 28 56.71 0.12 28 55.36 0.09 28 43.32 0.35 28 41.43 0.03
Miconic 50 50 34.46 0.01 50 44.80 0.01 50 30.84 0.28 50 30.38 0.03
Mprime 35 35 10.74 19.75 35 14.37 28.72 35 9.09 10.98 34 9.53 14.82
Mystery 30 27 7.07 0.92 25 7.71 1.08 22 7.29 1.70 18 6.61 0.24
NoMystery 20 19 24.33 1.09 5 25.17 5.47 11 24.67 2.66 4 19.75 0.23
OpenStacks 30 29 141.40 129.05 30 137.90 64.55 30 142.93 3.49 30 155.67 6.86
OpenStacksIPC6 30 30 125.89 40.19 30 134.14 48.89 30 130.18 4.91 30 136.17 0.38
ParcPrinter 30 27 35.92 6.48 28 36.40 0.26 30 37.72 0.28 30 42.73 0.06
Parking 20 17 90.46 577.30 17 146.08 693.12 19 87.23 363.89 3 88.33 945.86
Pegsol 30 30 24.20 1.17 30 25.17 8.60 30 25.90 2.76 30 25.50 7.61
Pipes-NonTan 50 47 39.09 35.97 45 46.73 3.18 44 57.59 11.10 35 34.34 12.77
Pipes-Tan 50 40 40.48 254.62 43 55.40 102.29 41 48.60 58.44 20 31.45 87.96
PSRsmall 50 48 22.15 2.62 50 21.40 0.08 50 18.31 0.36 42 16.71 63.05
Rovers 40 40 105.08 44.19 40 109.97 24.19 40 108.28 17.90 40 100.47 31.78
Satellite 20 20 36.05 1.26 20 37.05 0.84 20 40.75 0.78 20 37.75 0.10
Scanalyzer 30 27 29.37 7.40 28 25.15 5.59 28 27.52 8.14 30 31.87 70.74
Sokoban 30 23 220.57 125.12 25 233.48 39.63 28 213.00 58.24 26 213.38 26.61
Storage 30 20 20.94 4.34 21 14.56 0.07 18 24.33 8.15 18 16.28 39.17
Tidybot 20 18 62.94 198.22 19 53.50 35.33 16 62.31 113.00 15 63.20 9.78
Tpp 30 30 112.33 36.51 30 155.63 58.98 30 119.13 18.12 28 122.29 53.23
Transport 30 30 107.70 55.04 30 137.17 44.72 30 108.03 94.11 29 117.41 167.10
Trucks 30 15 26.50 8.59 8 26.75 113.54 16 24.12 0.53 11 27.09 3.84
Visitall 20 20 947.67 84.67 19 1185.67 308.42 20 1285.56 77.80 6 450.67 38.22
Woodworking 30 30 41.13 19.12 30 41.13 15.93 30 51.57 12.45 17 32.35 0.22
Zeno 20 20 37.70 77.56 20 44.90 6.18 20 35.80 4.28 20 30.60 0.17
Summary 1150 1070 87.93 63.36 1052 98.71 49.94 1065 98.67 44.35 909 67.75 51.50

cally by two other measures: first, usg(n), that counts the number of
subgoals not yet achieved up to n, and second, hadd(n), that is the
additive heuristic.

The subgoals are the problem landmarks [13] derived using a stan-
dard polynomial algorithm over the delete-relaxation [20, 15]. The
count usg(n) is similar to the landmark heuristic in LAMA [18],
simplified a bit: we use only atomic landmarks (no disjunctions),
sound orderings, and count a top goal p as achieved when goals q
that must be established before q have been achieved [16].

The novelha(n) measure combines the novelty of n and whether
the action leading to n is helpful or not [12]. The novelty of n is
defined as the size of the smallest tuple t of atoms that is true in n and
false in all previously generated nodes n′ in the search with the same
number of unachieved goals usg(n′) = usg(n). Basically, nodes
n and n′ in the search with different number of unachieved goals,
usg(n) 6= usg(n′), are treated as being about different subproblems,
and are not compared for determining their novelty. The novelty of a
node novel(n) is computed approximately, being set to 3 when it’s
neither 1 nor 2. Similarly, if help(n) is set to 1 or 2 according to
whether the action leading to n was helpful or not, then novelha(n)
is set to a number between 1 and 6 defined as

novelha(n) = 2[novel(n)− 1] + help(n) (2)

That is, novelha(n) is 1 if the novelty of n is 1 and the action leading
to n is helpful, 2 if the novelty is 1 and the action is not helpful, 3 if
the novelty is 2 and the action is helpful, and so on. Basically, novel
states (lower novel(n) measure) are preferred to less novel states,
and helpful actions are preferred to non-helpful, with the former cri-
terion carrying more weight. Once again, the criterion is simple and
follows from performance considerations.

We call the resulting best-first search planner, BFS(f), and com-
pare it with three state-of-the-art planners: FF, LAMA, and PROBE
[12, 18, 16].4 Like LAMA, BFS(f) uses delayed evaluation, a tech-
nique that is useful for problems with large branching factors [17].

Table 4 compares the four planners over the 1150 instances. In
terms of coverage, BFS(f) solves 5 more problems than LAMA, 18
more than PROBE and 161 more than FF. Significant differences in
coverage occur in Sokoban, Parking, NoMystery and Floortile where
either LAMA or BFS(f) solve 10% more instances than the second
best planner. The largest difference is in NoMystery where BFS(f)
solves 19 instances while LAMA solves 11.

Time and plan quality averages are computed over the instances
that are solved by BFS(f), LAMA and PROBE. FF is excluded from
these averages because of the large gap in coverage. LAMA and
PROBE are the fastest in 16 domains each, and BFS(f) in 5. On
the other hand, BFS(f) finds shorter plans in 15 domains, PROBE
in 13, and LAMA in 10. The largest differences between BFS(f)
and the other planners are in 8puzzle, Parking, Pipesworld Tankage,
Pipesworld Non Tankage, and VisitAll.

The results show that the performance of BFS(f) is at the level
of the best planners. The question that we address next is what’s the
contribution of the four different ideas combined in the evaluation
function f(n) and in the tie-breakers; namely, the additive heuristic
hadd(n), the landmark count usg(n), the novelty measure novel(n),
and the helpful action distinction help(n). The last two terms are the
ones that determine the evaluation function f(n) in (1) through the
formula (2).

Table 5 shows the result of a simple ablation study. The first row
shows the results for the planner BFS(f) as described above, while

4 FF is FF2.3, while PROBE and LAMA are from the 2011 IPC.

Table 5. Ablation study of BFS(f) when some features are excluded.
Delayed evaluation excluded from second and following rows, in addition to
feature shown. Columns show number of instances (I), number of instances

solved (S), % solved (%S), and average plan lengths (Q) and times in
seconds (T).

I S % S Q T
BFS(f) 1150 1070 93% 82.80 62.89
No Delayed Eval 1150 1020 89% 80.67 65.92
No Heuristic 1150 965 84% 100.47 32.43
No Helpful Actions 1150 964 84% 81.82 64.20
No Novelty 1150 902 78% 86.40 46.11

the following rows show results for the same planner with one or
several features removed: first delayed evaluation, then the additive
heuristic, helpful actions, and novelty. This is achieved by setting
help(n) = 0, hadd(n) = 0, and novel(n) = 1 respectively in
(1) and (2) for all n. As it can be seen from the table, the great-
est drop in performance arises when the novelty term is dropped. In
other words, the novelty measure is no less important in the BFS(f)
planner than either the helpful action distinction or the heuristic.
The most important term of all however is the usg(n) that counts
the number of unachieved goals, and whose effect is to ‘serialize’
the best-first search to the goal without giving up completeness (as
SIW). Moreover, the definition of the novelty measure in (2) uses the
usg(n) count to delimit the set of previously generated states that are
considered. Yet BFS(f ′) with the evaluation function f ′ = usg(n),
i.e., without any of the other features, solves just 776 instances. On
the other hand, with the term novelha(n) added, the number jumps
to 965, surpassing FF that solves 909 problems. This is interesting as
BFS(f ′) uses no heuristic estimator then.

7 DISCUSSION
We have introduced a width parameter that bounds the complexity of
classical planning problems along with an iterative pruned breadth-
first algorithm IW that runs in time exponential in the problem width.
While most benchmark domains appear to have a bounded and small
width provided that goals are restricted to single atoms, they have
large widths for arbitrary joint goals. We have shown nonetheless that
the algorithm derived for exploiting the structure of planning prob-
lems with low width, IW, also pays off over benchmarks with joint
goals once the same algorithm is used for decomposing the problems
into subproblems. Actually, the resulting blind-search algorithm SIW
is competitive with a baseline planner based on a Greedy Best First
Search and the additive heuristic, suggesting that the two ideas under-
lying SIW, novelty-based pruning and goal decomposition, are quite
powerful. We have also shown that it is possible to integrate the no-
tion of novelty derived from width considerations, with existing plan-
ning techniques for defining the evaluation function of a novel best-
first search planner with state-of-the-art performance. Moreover, we
have shown that the new technique contributes to the performance of
this planner no less than helpful actions or heuristic estimators.

The notion of width is defined over graphs Gm whose vertices are
tuples of at mostm atoms. This suggests a relation between the width
of a problem and the family of admissible hm heuristics which are
also defined over tuples of at most m atoms [9]. A conjecture that
we considered is whether a width of w implies that hw is equal to
the optimal heuristic h∗. The conjecture however is false.5 It turns

5 A counterexample is due to Blai Bonet. Consider a problem P with initial
situation I = {r}, goal G = {z}, and actions a : r → p,¬r, b : r →
q,¬r, c : r → x, d : x → p, q, y, and e : p, q → z. It can be shown that
the problem has width w = 1, as the graph G1 contains the rooted path
r, x, y, z. Yet, h∗(P) = 3 with optimal plan c, d, e, while the heuristic

out that for this correspondence to be true, an additional clause is
needed in the definition of the heuristic hm; namely, that hm(t) is no
lower than hm(t′) when t′ is a tuple of at most m atoms that implies
t in the sense defined in Section 3. Yet, checking this implication in
general is intractable.

In this paper, we have only considered planning problems where
actions have uniform costs. Some of the notions and algorithms de-
veloped in the paper, however, extend naturally to non-uniform costs
provided that the breadth-first search in IW is replaced by a uniform-
cost search (Dijkstra).

ACKNOWLEDGEMENTS
H. Geffner is partially supported by grants TIN2009-10232,
MICINN, Spain, and EC-7PM-SpaceBook.

REFERENCES
[1] E. Amir and B. Engelhardt, ‘Factored planning.’, in Proc. IJCAI-03,

(2003).
[2] C. Bäckström, Five years of tractable planning, 19–33, IOS Press,

1996.
[3] B. Bonet and H. Geffner, ‘Planning as heuristic search’, Artificial Intel-

ligence, 129, 5–33, (2001).
[4] R. I. Brafman and C. Domshlak, ‘Factored planning: How, when, and

when not.’, in Proc. AAAI-06, (2006).
[5] T. Bylander, ‘The computational complexity of STRIPS planning’, Ar-

tificial Intelligence, 69, 165–204, (1994).
[6] H. Chen and O. Giménez, ‘Act local, think global: Width notions for

tractable planning’, in Proc. ICAPS-07, (2007).
[7] R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.
[8] E.C. Freuder, ‘A sufficient condition for backtrack-free search’, J.

ACM, 29, 24–32, (1982).
[9] P. Haslum and H. Geffner, ‘Admissible heuristics for optimal planning’,

in Proc. AIPS-00, (2000).
[10] J. Hoffmann, ‘The Metric-FF planning system: Translating ”ignoring

delete lists” to numeric state variables.’, JAIR, 20, 291–341, (2003).
[11] J. Hoffmann, ‘Analyzing search topology without running any search:

On the connection between causal graphs and h+’, JAIR, 41, 155–229,
(2011).

[12] J. Hoffmann and B. Nebel, ‘The FF planning system: Fast plan genera-
tion through heuristic search’, JAIR, 14, 253–302, (2001).

[13] J. Hoffmann, J. Porteous, and L. Sebastia, ‘Ordered landmarks in plan-
ning’, JAIR, 22, 215–278, (2004).

[14] Jörg Hoffmann, ‘Where ‘ignoring delete lists’ works: Local search
topology in planning benchmarks’, JAIR, 24, 685–758, (2005).

[15] E. Keyder, S. Richter, and M. Helmert, ‘Sound and complete landmarks
for and/or graphs’, in Proc. ECAI-10, (2010).

[16] N. Lipovetzky and H. Geffner, ‘Searching for plans with carefully de-
signed probes’, in Proc. ICAPS-11, (2011).

[17] S. Richter and M. Helmert, ‘Preferred operators and deferred evaluation
in satisficing planning’, in Proc. ICAPS-09, (2009).

[18] S. Richter, M. Helmert, and M. Westphal, ‘Landmarks revisited’, in
Proc. AAAI-08, (2008).

[19] S. Richter and M. Westphal, ‘The LAMA planner: Guiding cost-based
anytime planning with landmarks’, JAIR, 39, 122–177, (2010).

[20] Lin Zhu and Robert Givan, ‘Landmark extraction via planning graph
propagation’, in Proc. ICAPS-03 Doctoral Consortium, (2003).

hm for m = 1, is hmax, which for this problem is 2. Thus, w(P) = w
and yet h∗(P) 6= hw(P).

