
LTLf Synthesis on First-Order Agent Programs in
Nondeterministic Environments

Till Hofmann and Jens Claßen

Roskilde University

LTLf Synthesis on First-Order Agent Programs in
Nondeterministic Environments

Till Hofmann and Jens Claßen

Roskilde University

At a Glance
Golog: agent programming language based on first-order logic with nondeterministic operators

Program realization: Resolve nondeterministic operators to determine successful program execution

So far: Nondeterminism assumed to be angelic

Key idea: Environment controls some actions + temporal LTLf goal → realization becomes a synthesis task

Result: Sound and complete procedure to determine a policy

Background

LTLf Synthesis

Given:

•A finite set of propositional symbols P = X ∪̇ Y
where X is uncontrollable and Y is controllable

•LTLf formula Φ

Task: Control Y such that for all values of X , Φ is
satisfied

Limitations:

•Fixed, finite set propositions
•Agent and environment always alternate

•User preferences must be encoded into Φ

Agent Programming with Golog

• Situation calculus:
first-order axiomatization of dynamic worlds

• ES: modal variant, e.g.,

[a]ϕ =̂“ϕ holds after doing action a”

•Golog: agent programming language
based on the situation calculus

• program may use nondeterministic operators
→ partial behavior specification

Limitation: Nondeterminism is assumed to be angelic

LTLf Synthesis on Golog Programs
Proposal: Combine LTLf synthesis with agent programs

Given:

•Golog program G = (D, δ)
•Partitioning of primitive actions A = AC ∪̇ AE into
controllable AC and environment actions AE

•First-order LTLf temporal goal Φ:

Φ ::= ϕ | Φ ∧ Φ | X Φ | Φ U Φ

where ϕ is an ES fluent sentence

Task: Determine execution policy π such that

• π may only choose actions according to program δ

• π may not restrict environment actions

• π must be non-blocking

• every trace must satisfy Φ

A Decidable Fragment
The synthesis problem is undecidable in general

Decidable fragment (Zarrieß and Claßen 2016):

•Base logic restricted to C2 (two variables + counting)

• Successor state axioms must be acyclic

•Pick operator restricted to finite domains

Finite abstraction:

•Characteristic graph is a finite representation of δ

•Finitely many (accumulated) effects ED,A

•Finitely many world types Types(G)
type(w) =̇ {(ψ, E) | w |= R[E,ψ]}

context condition
from C(G)

effect from ED,A

“ψ holds in w
after applying E”

Example: Dish Robot
Initial situation:

Dish(x) ≡ (x = d1), Room(x) ≡ (x = r1)

∀x.At(x) ≡ x = kitchen

∀x.New (x) ≡ Dish(x)

∧ ∀y.¬DirtyDish(x, y) ∧ ¬OnRobot(x)
OnRobot(x) ⊃ Dish(x) ∧ ¬∃yDirtyDish(x, y)
DirtyDish(x, y) ⊃ Dish(x) ∧ Room(y) ∧ ¬OnRobot(x)
Precondition axioms:

□Poss(load(x, y)) ≡ DirtyDish(x, y) ∧ At(y)

□Poss(unload(x)) ≡ OnRobot(x) ∧ At(kitchen)

□Poss(addDish(x, y)) ≡ New (x) ∧ Room(y)

□Poss(goto(x)) ≡ Room(x) ∨ x = kitchen

Successor state axioms:

□[a]DirtyDish(x, y) ≡ a = addDish(x, y)

∨ DirtyDish(x, y) ∧ a ̸= load(x, y)

□[a]OnRobot(x) ≡ ∃y. a = load(x, y)

∨OnRobot(x) ∧ a ̸= unload(x)

□[a]New (x) ≡ New (x) ∧ ¬∃y. a = addDish(x, y)

□[a]At(x) ≡ a = goto(x) ∨ At(x) ∧ ¬∃y.a = goto(y)

Program:

loop:
while ∃x.OnRobot(x) do
πx : {d1}. unload(x);
πy : {r1}. goto(y);
while ∃x.DirtyDish(x, y) do
πx : {d1}. load(x, y);
goto(kitchen)
∥
loop: πx : {d1}, y : {r1}. addDish(x, y)

agent

environment

Specification: F G ¬∃x, y.DirtyDish(x, y)

Game Arena for Dish Robot

0 1 2

3 4 5 6

7 8
9

1011 12
13

1415

1617

1819

20

21

goto(r) unload(d)

goto(r) addDish(d,r)

load(d,r) goto(r)

goto(kit)
addDish(d,r)

goto(r)

goto(kit) goto(kit)

goto(r)

addDish(d,r)

load(d,r)unload(d)

goto(r)

goto(r)

goto(kit)goto(r)

unload(d)
goto(kit)

goto(r)

goto(r)

goto(kit) goto(r)

accepting

final

strategy

Evaluation: Dish Robot
R D Nodes (TS) Edges (TS) Nodes (St) Edges (St) Time [s]

1 1 22 25 16 19 2.6
1 2 150 203 128 176 155.4
1 3 – – – – –
2 1 109 168 87 110 69.0
2 2 – – – – –
3 1 483 857 413 543 1885.7
3 2 – – – – –

LTLf Normal Forms: TNF and XNF

TNF: Introduce Tail to mark the last state of a trace

XNF:Convert formula such that the only outermost tem-
poral connective is X

⇒Treat Φ as propositional formula, where subformulas
of the form X Ψ are propositions

⇒ Split propositional assignment P into three parts:
local L(P), next X(P), tail T (P)

The Game Arena
Given:

•Golog program G = (D, δ)
•Temporal formula Φ

Game arena AΦ
G = (S,S0,→,SF ,SA):

•Each state s ∈ S is of the form s = (τ, E,A, ρ) where

1. τ ∈ Types(G);
2. ρ ∈ sub(δ) is a node of the characteristic graph;

3.E ⊆ ED,A;

4.A = {(χi, θi)}i, where χi ⊆ cl(Φ), θi ∈ {⊤,⊥}.
•A state s = (τ, E,A, ρ) is an initial state s ∈ S0 if
1. τ = type(w) for some w with w |= D;
2. ρ = δ is the initial program expression;

3.E = ∅;
4. (χ, θ) ∈ A iff there is a propositional assignment P of
xnf(Φ)p such that

(a) {(ψ,E) | ψ ∈ L(P)} ⊆ τ

(b)χ = X(P)

(c) θ = T (P)

•There is a transition s1
α−→ s2 from s1 = (τ, E1, A1, ρ1)

to s2 = (τ, E2, A2, ρ2) if

1. there is an edge ρ1
α:ψ−−→ ρ2 in Cδ with (ψ,E1) ∈ τ ;

2.E2 = E1 ▷ ED(τ, E1, α);

3. (χ2, θ2) ∈ A2 if there is a propositional assignment P
of xnf(

∧
χp1) for some (χ1, θ1) ∈ A1 such that

(a) θ1 = ⊥
(b) {(ψ,E2) | ψ ∈ L(P)} ⊆ τ

(c)χ2 = X(P)

(d) θ2 = T (P)

A state s = (τ, E,A, ρ) is
• final if (φ(ρ), E) ∈ τ , and • accepting if (∅,⊤) ∈ A.

Finding a Strategy

1: for all H ∈ 2SF∩SA do
2: G← H ; R← {s ∈ G | SuccE(s) = ∅}; σ ← ∅
3: Q← {s ∈ S | Succ(s) ∩G ̸= ∅}
4: while Q ̸= ∅ do
5: s← pop(Q)
6: if s ∈ SF \ SA ∧ SuccC(s) = ∅ then continue
7: if s ∈ R then continue
8: if SuccE(s) ̸= ∅ ∧ ∀s′ ∈ SuccE(s) : s′ ∈ G ∨

SuccE(s) = ∅ ∧ ∃s′ ∈ SuccC(s) : s
′ ∈ G then

9: G← G ∪ {s}; R← R ∪ {s}
10: if s ∈ SF ∩ SA then
11: σ(s)← {α | ∃s′ ∈ SuccE(s). s

α−→ s′}
12: else σ(s)← {α | ∃s′ ∈ G. s α−→ s′}
13: Q← Q ∪ {s′ | s ∈ Succ(s′)}
14: if H ∪ S0 ⊆ R then return σ

Paper Poster Code

39th Annual AAAI Conference on Artificial Intelligence, Feb 25–Mar 4, 2025, Philadelphia, PA, USA

https://arxiv.org/pdf/2410.00726
https://ml.rwth-aachen.de/~till.hofmann/papers/aaai25-ltlf-golog_poster.pdf
https://github.com/jens-classen/vergo

