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At a Glance
Golog: agent programming language based on first-order logic with nondeterministic operators

Program realization: Resolve nondeterministic operators to determine successful program execution

So far: Nondeterminism assumed to be angelic

Key idea: Environment controls some actions + temporal LTLf goal → realization becomes a synthesis task

Result: Sound and complete procedure to determine a policy

Background

LTLf Synthesis

Given:

•A finite set of propositional symbols P = X ∪̇ Y
where X is uncontrollable and Y is controllable

•LTLf formula Φ

Task: Control Y such that for all values of X , Φ is
satisfied

Limitations:

•Fixed, finite set propositions
•Agent and environment always alternate

•User preferences must be encoded into Φ

Agent Programming with Golog

• Situation calculus:
first-order axiomatization of dynamic worlds

• ES: modal variant, e.g.,

[a]ϕ =̂“ϕ holds after doing action a”

•Golog: agent programming language
based on the situation calculus

• program may use nondeterministic operators
→ partial behavior specification

Limitation: Nondeterminism is assumed to be angelic

LTLf Synthesis on Golog Programs
Proposal: Combine LTLf synthesis with agent programs

Given:

•Golog program G = (D, δ)
•Partitioning of primitive actions A = AC ∪̇ AE into
controllable AC and environment actions AE

•First-order LTLf temporal goal Φ:

Φ ::= ϕ | Φ ∧ Φ | X Φ | Φ U Φ

where ϕ is an ES fluent sentence

Task: Determine execution policy π such that

• π may only choose actions according to program δ

• π may not restrict environment actions

• π must be non-blocking

• every trace must satisfy Φ

A Decidable Fragment
The synthesis problem is undecidable in general

Decidable fragment (Zarrieß and Claßen 2016):

•Base logic restricted to C2 (two variables + counting)

• Successor state axioms must be acyclic

•Pick operator restricted to finite domains

Finite abstraction:

•Characteristic graph is a finite representation of δ

•Finitely many (accumulated) effects ED,A

•Finitely many world types Types(G)
type(w) =̇ {(ψ, E ) | w |= R[E,ψ]}

context condition
from C(G)

effect from ED,A

“ψ holds in w
after applying E”

Example: Dish Robot
Initial situation:

Dish(x) ≡ (x = d1), Room(x) ≡ (x = r1)

∀x.At(x) ≡ x = kitchen

∀x.New (x) ≡ Dish(x)

∧ ∀y.¬DirtyDish(x, y) ∧ ¬OnRobot(x)
OnRobot(x) ⊃ Dish(x) ∧ ¬∃yDirtyDish(x, y)
DirtyDish(x, y) ⊃ Dish(x) ∧ Room(y) ∧ ¬OnRobot(x)
Precondition axioms:

□Poss(load(x, y)) ≡ DirtyDish(x, y) ∧ At(y)

□Poss(unload(x)) ≡ OnRobot(x) ∧ At(kitchen)

□Poss(addDish(x, y)) ≡ New (x) ∧ Room(y)

□Poss(goto(x)) ≡ Room(x) ∨ x = kitchen

Successor state axioms:

□[a]DirtyDish(x, y) ≡ a = addDish(x, y)

∨ DirtyDish(x, y) ∧ a ̸= load(x, y)

□[a]OnRobot(x) ≡ ∃y. a = load(x, y)

∨OnRobot(x) ∧ a ̸= unload(x)

□[a]New (x) ≡ New (x) ∧ ¬∃y. a = addDish(x, y)

□[a]At(x) ≡ a = goto(x) ∨ At(x) ∧ ¬∃y.a = goto(y)

Program:

loop:
while ∃x.OnRobot(x) do
πx : {d1}. unload(x);
πy : {r1}. goto(y);
while ∃x.DirtyDish(x, y) do
πx : {d1}. load(x, y);
goto(kitchen)
∥
loop: πx : {d1}, y : {r1}. addDish(x, y)

agent

environment

Specification: F G ¬∃x, y.DirtyDish(x, y)

Game Arena for Dish Robot
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Evaluation: Dish Robot
R D Nodes (TS) Edges (TS) Nodes (St) Edges (St) Time [s]

1 1 22 25 16 19 2.6
1 2 150 203 128 176 155.4
1 3 – – – – –
2 1 109 168 87 110 69.0
2 2 – – – – –
3 1 483 857 413 543 1885.7
3 2 – – – – –

LTLf Normal Forms: TNF and XNF

TNF: Introduce Tail to mark the last state of a trace

XNF:Convert formula such that the only outermost tem-
poral connective is X

⇒Treat Φ as propositional formula, where subformulas
of the form X Ψ are propositions

⇒ Split propositional assignment P into three parts:
local L(P ), next X(P ), tail T (P )

The Game Arena
Given:

•Golog program G = (D, δ)
•Temporal formula Φ

Game arena AΦ
G = (S,S0,→,SF ,SA):

•Each state s ∈ S is of the form s = (τ, E,A, ρ) where

1. τ ∈ Types(G);
2. ρ ∈ sub(δ) is a node of the characteristic graph;

3.E ⊆ ED,A;

4.A = {(χi, θi)}i, where χi ⊆ cl(Φ), θi ∈ {⊤,⊥}.
•A state s = (τ, E,A, ρ) is an initial state s ∈ S0 if
1. τ = type(w) for some w with w |= D;
2. ρ = δ is the initial program expression;

3.E = ∅;
4. (χ, θ) ∈ A iff there is a propositional assignment P of
xnf(Φ)p such that

(a) {(ψ,E) | ψ ∈ L(P )} ⊆ τ

(b)χ = X(P )

(c) θ = T (P )

•There is a transition s1
α−→ s2 from s1 = (τ, E1, A1, ρ1)

to s2 = (τ, E2, A2, ρ2) if

1. there is an edge ρ1
α:ψ−−→ ρ2 in Cδ with (ψ,E1) ∈ τ ;

2.E2 = E1 ▷ ED(τ, E1, α);

3. (χ2, θ2) ∈ A2 if there is a propositional assignment P
of xnf(

∧
χp1) for some (χ1, θ1) ∈ A1 such that

(a) θ1 = ⊥
(b) {(ψ,E2) | ψ ∈ L(P )} ⊆ τ

(c)χ2 = X(P )

(d) θ2 = T (P )

A state s = (τ, E,A, ρ) is
• final if (φ(ρ), E) ∈ τ , and • accepting if (∅,⊤) ∈ A.

Finding a Strategy

1: for all H ∈ 2SF∩SA do
2: G← H ; R← {s ∈ G | SuccE(s) = ∅}; σ ← ∅
3: Q← {s ∈ S | Succ(s) ∩G ̸= ∅}
4: while Q ̸= ∅ do
5: s← pop(Q)
6: if s ∈ SF \ SA ∧ SuccC(s) = ∅ then continue
7: if s ∈ R then continue
8: if SuccE(s) ̸= ∅ ∧ ∀s′ ∈ SuccE(s) : s′ ∈ G ∨

SuccE(s) = ∅ ∧ ∃s′ ∈ SuccC(s) : s
′ ∈ G then

9: G← G ∪ {s}; R← R ∪ {s}
10: if s ∈ SF ∩ SA then
11: σ(s)← {α | ∃s′ ∈ SuccE(s). s

α−→ s′}
12: else σ(s)← {α | ∃s′ ∈ G. s α−→ s′}
13: Q← Q ∪ {s′ | s ∈ Succ(s′)}
14: if H ∪ S0 ⊆ R then return σ
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