LTL_F Synthesis on First-Order Agent Programs in NONDETERMINISTIC ENVIRONMENTS

Till Hofmann and Jens Claßen

At a Glance

Golog: agent programming language based on first-order logic with nondeterministic operators **Program realization:** Resolve nondeterministic operators to determine successful program execution So far: Nondeterminism assumed to be angelic

Key idea: Environment controls some actions + temporal LTL_f goal \rightarrow realization becomes a synthesis task

Result: Sound and complete procedure to determine a **policy**

LTL_f Normal Forms: TNF and XNF

TNF: Introduce *Tail* to mark the last state of a trace **XNF**: Convert formula such that the only outermost temporal connective is \mathcal{X}

- \Rightarrow Treat Φ as **propositional formula**, where subformulas of the form $\mathcal{X} \Psi$ are propositions
- \Rightarrow Split propositional assignment P into three parts: local L(P), next X(P), tail T(P)

Background

LTL_f Synthesis

Given:

• A finite set of propositional symbols $\mathcal{P} = \mathcal{X} \cup \mathcal{Y}$ where \mathcal{X} is uncontrollable and \mathcal{Y} is controllable

• LTL_f formula Φ

Task: Control \mathcal{Y} such that for all values of \mathcal{X} , Φ is satisfied

Limitations:

- Fixed, finite set propositions
- Agent and environment always alternate
- User preferences must be encoded into Φ

Agent Programming with Golog

• Situation calculus: first-order axiomatization of dynamic worlds • ES: modal variant, e.g.,

- $[a]\phi = "\phi holds after doing action a"$
- GOLOG: agent programming language based on the situation calculus
- program may use nondeterministic operators \rightarrow partial behavior specification

Example: Dish Robot

Initial situation:

 $Dish(x) \equiv (x = d_1), Room(x) \equiv (x = r_1)$ $\forall x. At(x) \equiv x = kitchen$ $\forall x. New(x) \equiv Dish(x)$

 $\wedge \forall y. \neg DirtyDish(x, y) \land \neg OnRobot(x)$ $OnRobot(x) \supset Dish(x) \land \neg \exists y DirtyDish(x,y)$ $DirtyDish(x, y) \supset Dish(x) \land Room(y) \land \neg OnRobot(x)$

Precondition axioms:

 $\Box \operatorname{Poss}(load(x, y)) \equiv DirtyDish(x, y) \land At(y)$ $\Box \operatorname{Poss}(unload(x)) \equiv OnRobot(x) \wedge At(kitchen)$ $\Box \operatorname{Poss}(addDish(x, y)) \equiv New(x) \land Room(y)$ $\Box \operatorname{Poss}(goto(x)) \equiv Room(x) \lor x = kitchen$

Successor state axioms:

 $\Box[a] DirtyDish(x, y) \equiv a = addDish(x, y)$ \lor DirtyDish $(x, y) \land a \neq load(x, y)$ $\Box[a] OnRobot(x) \equiv \exists y. a = load(x, y)$ $\lor OnRobot(x) \land a \neq unload(x)$ $\Box[a]New(x) \equiv New(x) \land \neg \exists y. a = addDish(x, y)$ $\Box[a]At(x) \equiv a = goto(x) \lor At(x) \land \neg \exists y.a = goto(y)$ **Program:**

The Game Arena Given: • GOLOG program $\mathcal{G} = (\mathcal{D}, \delta)$ • Temporal formula Φ Game arena $\mathbb{A}^{\Phi}_{\mathcal{G}} = (\mathcal{S}, \mathcal{S}_0, \rightarrow, \mathcal{S}_F, \mathcal{S}_A)$: • Each state $s \in \mathcal{S}$ is of the form $s = (\tau, E, A, \rho)$ where 1. $\tau \in \text{Types}(\mathcal{G});$ 2. $\rho \in \operatorname{sub}(\delta)$ is a node of the characteristic graph; 3. $E \subseteq \mathfrak{E}^{\mathcal{D},\mathcal{A}};$ 4. $A = \{(\chi_i, \theta_i)\}_i$, where $\chi_i \subseteq cl(\Phi), \ \theta_i \in \{\top, \bot\}$. • A state $s = (\tau, E, A, \rho)$ is an initial state $s \in \mathcal{S}_0$ if 1. $\tau = \operatorname{type}(w)$ for some w with $w \models \mathcal{D}$; 2. $\rho = \delta$ is the initial program expression; 3. $E = \emptyset$; 4. $(\chi, \theta) \in A$ iff there is a propositional assignment P of $\operatorname{xnf}(\Phi)^p$ such that (a) $\{(\psi, E) \mid \psi \in L(P)\} \subseteq \tau$ (b) $\chi = X(P)$ (c) $\theta = T(P)$ • There is a transition $s_1 \xrightarrow{\alpha} s_2$ from $s_1 = (\tau, E_1, A_1, \rho_1)$ to $s_2 = (\tau, E_2, A_2, \rho_2)$ if 1. there is an edge $\rho_1 \xrightarrow{\alpha:\psi} \rho_2$ in \mathcal{C}_{δ} with $(\psi, E_1) \in \tau$; 2. $E_2 = E_1 \triangleright \mathcal{E}_{\mathcal{D}}(\tau, E_1, \alpha);$ 3. $(\chi_2, \theta_2) \in A_2$ if there is a propositional assignment P of $\operatorname{xnf}(\bigwedge \chi_1^p)$ for some $(\chi_1, \theta_1) \in A_1$ such that (a) $\theta_1 = \bot$ (b) $\{(\psi, E_2) \mid \psi \in L(P)\} \subseteq \tau$ (c) $\chi_2 = X(P)$ $(\mathbf{d})\,\theta_2 = T(P)$ A state $s = (\tau, E, A, \rho)$ is • final if $(\varphi(\rho), E) \in \tau$, and • accepting if $(\emptyset, \top) \in A$.

Limitation: Nondeterminism is assumed to be **angelic**

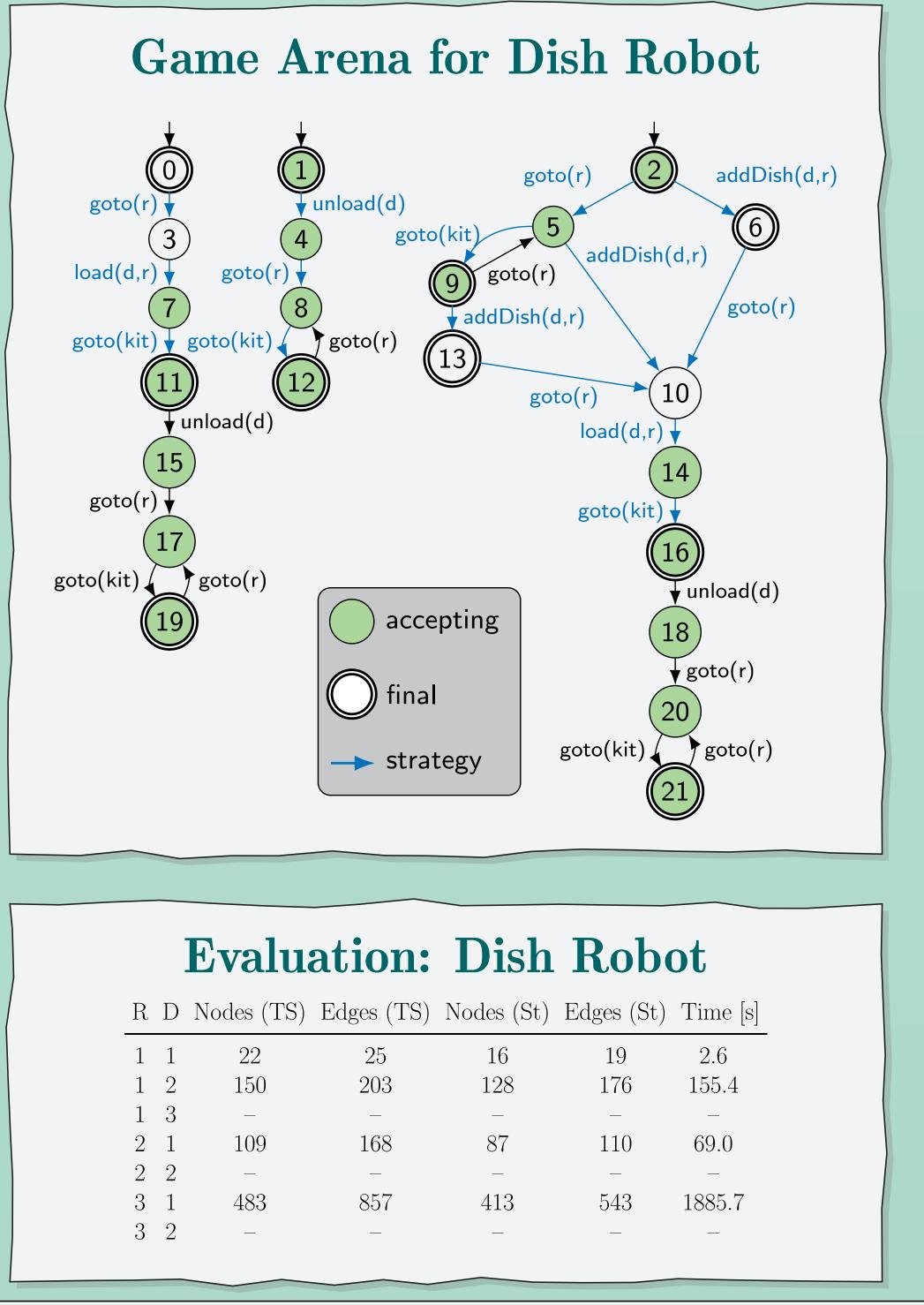
LTL_f Synthesis on Golog Programs

Proposal: Combine LTL_f synthesis with agent programs Given:

- GOLOG program $\mathcal{G} = (\mathcal{D}, \delta)$
- Partitioning of primitive actions $\mathcal{A} = \mathcal{A}_C \cup \mathcal{A}_E$ into controllable \mathcal{A}_C and environment actions \mathcal{A}_E
- First-order LTL_f temporal goal Φ :
 - $\Phi ::= \phi \mid \Phi \land \Phi \mid \mathcal{X} \Phi \mid \Phi \mathcal{U} \Phi$
- where ϕ is an \mathcal{ES} fluent sentence
- **Task:** Determine **execution policy** π such that
- π may only choose actions according to program δ
- π may not restrict environment actions
- π must be *non-blocking*
- every trace must satisfy Φ

```
loop:
 while \exists x. OnRobot(x) do
   \pi x : \{d_1\}. \ unload(x);
                                             agent
 \pi y : \{r_1\}. \ goto(y);
 while \exists x. DirtyDish(x, y) do
                                         environment
   \pi x : \{d_1\}. \ load(x, y);
  goto(kitchen)
```

```
loop: \pi x : \{d_1\}, y : \{r_1\}. addDish(x, y)
Specification: \mathcal{F}\mathcal{G} \neg \exists x, y. DirtyDish(x, y)
```



Finding a Strategy

- 1: for all $H \in 2^{\mathcal{S}_F \cap \mathcal{S}_A}$ do
- 2: $G \leftarrow H; R \leftarrow \{s \in G \mid \text{Succ}_E(s) = \emptyset\}; \sigma \leftarrow \emptyset$
- $3: \quad Q \leftarrow \{s \in \mathcal{S} \mid \operatorname{Succ}(s) \cap G \neq \emptyset\}$
- while $Q \neq \emptyset$ do
- $s \leftarrow \operatorname{POP}(Q)$
- if $s \in \mathcal{S}_F \setminus \mathcal{S}_A \wedge \operatorname{Succ}_C(s) = \emptyset$ then continue
- if $s \in R$ then continue if $\operatorname{Succ}_E(s) \neq \emptyset \land \forall s' \in \operatorname{Succ}_E(s) : s' \in G \lor$ $\operatorname{Succ}_E(s) = \emptyset \land \exists s' \in \operatorname{Succ}_C(s) : s' \in G$ then $G \leftarrow G \cup \{s\}; R \leftarrow R \cup \{s\}$ 9: if $s \in S_F \cap S_A$ then 10: $\sigma(s) \leftarrow \{ \alpha \mid \exists s' \in \operatorname{Succ}_E(s). \ s \xrightarrow{\alpha} s' \}$ 11: else $\sigma(s) \leftarrow \{ \alpha \mid \exists s' \in G. \ s \xrightarrow{\alpha} s' \}$ 12: $Q \leftarrow Q \cup \{s' \mid s \in \operatorname{Succ}(s')\}$ 13: if $H \cup S_0 \subseteq R$ then return σ

A Decidable Fragment

- The synthesis problem is **undecidable** in general Decidable fragment (Zarrieß and Claßen 2016): • Base logic restricted to C^2 (two variables + counting) • Successor state axioms must be **acyclic**
- Pick operator restricted to finite domains **Finite abstraction:**
- Characteristic graph is a finite representation of δ • Finitely many (accumulated) effects $\mathfrak{E}^{\mathcal{D},\mathcal{A}}$ " ψ holds in w *after applying* E" • Finitely many world types $Types(\mathcal{G})$

 $\operatorname{type}(w) \doteq \{(\psi, E) \mid w \models \mathcal{R}[E, \psi]\}$ \succ effect from $\mathfrak{E}^{\mathcal{D},\mathcal{A}}$ context condition from $\mathcal{C}(\mathcal{G})$

39th Annual AAAI Conference on Artificial Intelligence, Feb 25–Mar 4, 2025, Philadelphia, PA, USA