
LTLf Synthesis on
First-Order Agent Programs
in Nondeterministic Environments
AAAI 2025

Till Hofmann, Jens Claßen

June 2, 2025 Roskilde University

Motivating Example: The Dishwasher Robot

Till Hofmann, Jens Claßen Motivation • ◦ ◦ ◦ 1 / 10

High-Level Programming with Golog

Golog: High-level agent programming language
I Based on situation calculus → first-order logic
⇒ Open-world reasoning with incomplete information
I Allows nondeterministic constructs

loop:
while ∃x .OnRobot(x) do
πx . unload(x);
πy . goto(y);
while ∃x .DirtyDish(x , y) do
πx . load(x , y);

goto(kitchen)

Till Hofmann, Jens Claßen Motivation · Golog 2 / 10

What is missing?

This Golog program does not (fully) solve our task:
I Assumes angelic nondeterminism, i.e., agent has complete control

→ Actions may have unintended effects, e.g., dropping a cup while moving
→ Users may interfere and change the world, e.g., placing a new dirty dish on the table

I Initial state satisfies the goal!
→ The agent may need to react to requests → temporal goals

On the other hand:
I Acting in presence of an uncontrollable environment is well-understood in reactive synthesis
I Agent and environment alternate:

• Environment chooses propositional symbols from X
• Agent reacts by choosing propositional symbols from Y

I LTLf synthesis (De Giacomo and Vardi 2015): LTLf formula Φ over X ∪ Y
→ Determine strategy such that Φ is satisfied for all possible environment choices

Till Hofmann, Jens Claßen Motivation · Program Realization as Synthesis • ◦ 3 / 10

Program Realization as Synthesis

I Idea: Also model uncontrollable behavior as part of the agent program, e.g.,
during execution, a new dirty dish may appear in any room:

loop: πx , y . addDish(x , y)
I Partition all actions into agent and environment actions: A = AC ∪̇ AE
I Formulate goal as LTLf formula Φ, e.g.,

F G ¬∃x , y .DirtyDish(x , y)

I Task: Given a Golog program P, goal Φ, partitioning AC ∪̇ AE , find policy π:
• π must follow the program P
• π must allow all possible environment actions
• Every π trace must satisfy Φ

Till Hofmann, Jens Claßen Motivation · Program Realization as Synthesis ◦ • 4 / 10

Solving the Synthesis Problem: Main Challenges

1 First-order logic and thus first-order synthesis is undecidable
→ Restrict to a decidable fragment

2 Check the satisfaction of the temporal goal Φ
→ Split Φ:

1 Sub-formulas that are satisfied in the current state
2 Sub-formulas that must be satisfied in some future state

3 Determine a strategy that executes the program δ and satisfies Φ

→ Game-theoretic approach: construct a finite game arena and label recursively

Till Hofmann, Jens Claßen Approach · Overview 5 / 10

Step 1: Decidable Fragment

Zarrieß and Claßen 2016 describe a decidable fragment for verification:
1 The base logic is restricted to the two-variable fragment of FOL with counting (C2)

2 Successor state axioms must be acyclic
3 The pick operator π may only pick from a finite set of ground terms

With these restrictions, we can define a finite abstraction of a Golog program P = (D, δ):
I A program may only accumulate finitely many effects ED,A

I A program may only mention finitely many formulas → finite context C(P)

I Identify types of models w agreeing on context formulas after action effects:

type(w) =̇ {(ψ , E) | w |= R[E , ψ] }

context condition
from C(P)

effect from ED,A

“ψ holds in w
after applying E”

Till Hofmann, Jens Claßen Approach · Decidable Fragment 6 / 10

Step 2: Tracking the Satisfaction of LTLf Goal Φ
I Here: LTLf syntax, but replacing propositions with fluent sentences

Φ ::= φ | Φ ∧ Φ | X Φ | Φ U Φ

I We adopt two notions from (Li et al. 2020):
Tail Normal Form (TNF): mark the last state of a trace with Tail, e.g.,

F a =̇ > U a (¬Tail) U a ∧ F Tail
neXt Normal Form (XNF): only allow X as outermost temporal operator, e.g.,

a U b b ∨ (a ∧ X (a U b))
(¬Tail) U a ∧ F Tail

(
a ∨ ¬Tail ∧ X ((¬Tail) U a)

)
∧
(

Tail ∨ X F Tail
)

→ Treat Φ as propositional formula with propositional assignment P
⇒ Split P intro three parts:

L(P) = {l | l ∈ P is a literal other than (¬)Tail } = {¬a}
X(P) = {θ | X θ ∈ P} = {(¬Tail) U a, F Tail}
T (P) = > if Tail ∈ P and T (P) = ⊥ otherwise = ⊥

Till Hofmann, Jens Claßen Approach · LTLf Satisfaction 7 / 10

Putting Things Together: The Game Arena
I Construct a game arena AΦ

G that captures the execution of P while tracking the
satisfaction of Φ

I Each state is of the form
s = (τ , E , {(χi , θi)}i , ρ)

type of the world

accumulated effects remaining program

X(Pi) and T (Pi) of some
prop. assignment Pi

I A state is final if ρ is in a terminating configuration
I A state is accepting if (∅,>) ∈ A, i.e., Φ is satisfied
I Transitions:

(τ , ∅ , {({¬Tail U a,F Tail} , ⊥)}, doA())
doA()−−−→ (τ, {a}, ? {(∅ , >)},nil)

effect: a

xnf(¬Tail U a ∧ F Tail) = (a ∨ X ¬Tail U a) ∧ (Tail ∨ X F Tail)
L(P) = {a} X(P) = ∅ T (P) = >

Till Hofmann, Jens Claßen Approach · Constructing the Game Arena 8 / 10

Example with 1 Room and 1 Cup

I Program:
loop:
while ∃x .OnRobot(x) do
πx : {d1}. unload(x) ;
πy : {r1}. goto(y) ;
while ∃x .DirtyDish(x , y) do
πx : {d1}. load(x , y) ;

goto(kitchen)
‖
loop: πx : {d1}, y : {r1}. addDish(x , y)

agent environment

I Goal: F G ¬∃x , y .DirtyDish(x , y)

0 1 2

3 4 5 6

7 8
9

1011 12
13

1415

1617

1819

20

21

goto(r) unload(d)
goto(r) addDish(d,r)

load(d,r) goto(r)

goto(kit)
addDish(d,r)

goto(r)

goto(kit) goto(kit)

goto(r)

addDish(d,r)

load(d,r)unload(d)

goto(r)

goto(r)

goto(kit)goto(r)

unload(d)goto(kit)

goto(r)

goto(r)

goto(kit) goto(r)

accepting

final

strategy

Till Hofmann, Jens Claßen Approach · Example 9 / 10

Conclusion

I Golog is an expressive agent programming language based on first-order logic
I Assumption so far: The agent is under complete control
I More realistic view: Agent acts in a partially controllable environment
→ Program realization is now a synthesis task with an LTLf goal Φ
I Approach:

• Finite abstraction of the infinite program configuration space
• Track goal Φ by splitting into local and next parts
• Use a game-theoretic approach to determine a policy

⇒ Resulting policy guarantees to satisfy the goal,
independent of the environment’s choices

Till Hofmann, Jens Claßen Conclusion 10 / 10

Appendix

Till Hofmann, Jens Claßen Outline

Computing a Strategy

I Based on the finite game arena AΦ
G , determine a terminating and winning strategy

terminating: The agent must eventually terminate by not choosing any actions
winning: In every terminating state, the temporal goal Φ must be satisfied

I In principle, we can just start with the final+accepting states SF ∩SA and label bottom up
I Problem: Even in a final+accepting state, the environment may continue and eventually

lead into bad states
→ Guess a subset H ⊆ SF ∩ SA
I Check whether there is a strategy that enforce each play to end in H
I Label nodes bottom up with >/⊥
I Any strategy that remains in the >-labeled sub-graph is a terminating and winning

strategy

Till Hofmann, Jens Claßen Appendix · Computing a Strategy 1 / 2

Bibliography (I)

De Giacomo, Giuseppe and Moshe Y. Vardi (2015). “Synthesis for LTL and LDL on Finite
Traces”. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence
(IJCAI). AAAI Press, pp. 1558–1564.
Li, Jianwen et al. (Dec. 2020). “SAT-based Explicit LTLf Satisfiability Checking”. In:
Artificial Intelligence 289, p. 103369. doi: 10.1016/j.artint.2020.103369.
Zarrieß, Benjamin and Jens Claßen (2016). “Decidable Verification of Golog Programs over
Non-Local Effect Actions”. In: Proceedings of the 30th AAAI Conference on Artificial
Intelligence (AAAI). AAAI Press, pp. 1109–1115.

Till Hofmann, Jens Claßen Appendix · Bibliography 2 / 2

https://doi.org/10.1016/j.artint.2020.103369

Till Hofmann, Jens Claßen
Philadelphia, PA, USA, June 2, 2025

	Motivation
	Golog
	Program Realization as Synthesis

	Approach
	Overview
	Decidable Fragment
	LTL0.7f Satisfaction
	Constructing the Game Arena
	Example

	Conclusion
	Appendix
	Appendix
	Computing a Strategy
	Bibliography

	References

