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Abstract. The RoboCup Logistics League (RCLL) is a robotics compe-
tition in a production logistics scenario in the context of a Smart Factory.
In the competition, a team of three robots needs to assemble products
to fulfill various orders that are requested online during the game. This
year, the Carologistics team was able to win the competition with a new
approach to multi-agent coordination as well as significant changes to
the robot’s perception unit and a pragmatic network setup using the
cellular network instead of WiFi. In this paper, we describe the major
components of our approach with a focus on the changes compared to
the last physical competition in 2019.

1 Introduction

The Carologistics RoboCup Team is a cooperation of the Knowledge-Based
Systems Group (RWTH Aachen University) and the MASCOR Institute (FH
Aachen University of Applied Sciences). The team was initiated in 2012 and
consists of Doctoral, master’s, and bachelor’s students of both partners who
bring in their specific strengths tackling the various aspects of the RoboCup Lo-
gistics League (RCLL): designing hardware modifications, developing functional
software components, system integration, and high-level control of a group of
mobile robots.

In previous competitions [7,6], we have pursued a distributed approach to
multi-agent reasoning, where each robot acts on its own and coordinates with
the other robots to resolve conflicts. This year, we have pursued a different
strategy: Instead of having multiple agents each acting on its own, we now use one
central goal reasoner that assigns tasks to each robot. This allows a more long-
term strategy and avoids coordination overhead. Additionally, we have changed
our approach to perception and manipulation. Instead of a pointcloud-matching
approach that uses RGB/D data to iteratively determine an object’s pose, we
use a neural network to determine the bounding box of an object in an RGB
image and then use closed-loop visual servoing to approach the object. Finally,
we have taken first steps towards switching our navigation to ROS 2 and multi-
agent path finding.
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Fig. 1: Path for a product (green) of highest complexity, along with possible
options to supply material for the ring assemblies (blue, brown and red). product
in the RCLL.

In the following, we summarize the RCLL in Section 2 and provide an
overview of our system, starting with our robot platform in Section 3. In Sec-
tion 4, we present our software architecture and continue by describing our ad-
vances towards multi-agent path planning in Section 5, before we explain our
approach to perception and visual servoing in Section 6. In Section 7, we summa-
rize our approach to high-level decision making and describe our new centralized
approach to multi-agent coordination, before we conclude in Section 8.

2 The RoboCup Logistics League

The RoboCup Logistics League (RCLL) [12] is a RoboCup [10] competition
with a focus on smart factories and production logistics. In the RCLL, a team
of mobile robots has to fulfill dynamically generated orders by assembling work-
pieces. The robots operate and transport workpieces between static production
machines to assemble the requested products or to supply the stations with ma-
terial necessary to perform some assembly steps. The major challenges of the
RCLL include typical robotics tasks such as localization, navigation, perception,
and manipulation, with a particular focus on reasoning tasks such as planning,
plan execution, and execution monitoring.

The game is controlled by a semi-automatic Referee Box (refbox) [18]. The
refbox generates dynamic orders that consist of the desired product configu-
ration and a requested delivery time window for the product, which must be
manufactured by the robots of each team. Each requested product consists of a
base piece (colored red, black, or silver), up to three rings (colored blue, green,
orange, or yellow), and a cap (colored black or gray), resulting in 246 possi-
ble product configurations. The complexity of a product is determined by the
number of required rings, where a C0 product with zero rings is a product of
the lowest complexity, and a C3 product with three rings is a product of the
highest complexity. Each team has an exclusive set of seven machines of five
different types of Modular Production System (MPS) stations. To manufacture
a requested product, the team has to execute a sequence of production steps
by means of operating the MPS stations. An exemplary production is shown in
Figure 1.



3 The Carologistics Platform

Fig. 2: The Carologis-
tics Robotino

The standard robot platform of this league is the
Robotino by Festo Didactic [9]. The Robotino is de-
veloped for research and education and features omni-
directional locomotion, a gyroscope and webcam, in-
frared distance sensors, and bumpers. The teams may
equip the robot with additional sensors and compu-
tation devices as well as a gripper device for product
handling. The Carologistics Robotino is shown in Fig-
ure 2.

Sensors We use one forward-facing and one tilted,
backward-facing SICK TiM571 laser scanner for col-
lision avoidance and self-localization. Using a second
laser scanner in the back allows us to fully utilize the
omni-directional locomotion of the Robotino. In addi-
tion to the laser scanners, we use a webcam for de-
tecting the MPS identification tags, and a Creative
BlasterX Senz3D camera for conveyor belt detection.

3.1 Gripper System

Our gripper system consists of three linear axes and a three-fingered gripper, as
shown in Figure 3. The three axes are driven by stepper motors, which allows
movements with sub-millimeter accuracy. The axes are controlled by an Arduino,
which in turn receives commands from the Robotino main computer.

(a) The three linear axes
driven by stepper motors

(b) The CADmodel of the
three-fingered gripper

(c) The complete gripper
system

Fig. 3: The gripper system consisting of three linear axes and a self-centering
gripper with three fingers

The gripper uses three fingers and grips the workpiece from above. This
allows increased robustness and precision, as the workpiece is always centered
between the three spring-loaded fingers, independent of positioning errors.



Since 2021, the laptop on top of the Robotino (cf. Figure 2) was removed,
as the Robotino 4 is capabale of running our full software stack without further
need for additional computational power. As the laptop also served as an access
point, initially, a small access point was mounted to ensure WiFi connectivity.

3.2 Cellular Network Setup via Tailscale

The challenging characteristics of tens of competing wireless networks commu-
nicating across the different leagues are an ever existing issue at RoboCup. The
change of our hardware components in terms of the network equipment attached
to the Robotinos rendered our communication platform virtually unusable due
to tremendous paket loss among systems trying to communicate across the play-
ing field. In addition, the change to a central goal reasoning approach increased
the dependency on reliable communication among the participating machines.

Fig. 4: Smartphone for
USB based LTE tether-
ing to the robot

To address these issues and allow us to compete
properly, we switched from a local WiFi connection to
the cellular network of a generic local provider using
a Long Term Evolution (LTE) network. However, ac-
cording to the current rules of the RCLL3 “Communi-
cation among robots and to off-board computing units
is allowed only using WiFi”. This rule was mainly in-
tended to prohibit wired connections, so we approached
the other teams and the TC to get approval for the us-
age of the cellular network during the competition.

Each robot has a direct connection to the internet
by using a smartphone, which tethers its LTE connec-
tion to the robot without using WiFi. As the robots
expect a local network connection to each other, we
equipped the VPN service Tailscale4, which issues a
static IP address to each robot and which is based on
the WireGuard [4] network tunnel.

Albeit having some delay (100–200ms), the UDP
based connection was stable enough to reliably operate the robots and commu-
nicate to and from the central goal reasoning.

The authentication to join the Tailscale network is based on an existing
identity provider (in our case we utilized our GitHub organization). In addition,
the WireGuard tunnel encrypts the communication between the peers.

A drawback of this solution is the dependency on the cellular network in-
frastructure on site, which at the venue of RoboCup Bangkok was no issue.
Additionally, we had to be mindful of the data usage as the we had limited data

3 See Section 7 of https://github.com/robocup-logistics/rcll-rulebook/

releases/download/2022/rulebook2022.pdf
4 https://tailscale.com/

https://github.com/robocup-logistics/rcll-rulebook/releases/download/2022/rulebook2022.pdf
https://github.com/robocup-logistics/rcll-rulebook/releases/download/2022/rulebook2022.pdf
https://tailscale.com/


available on the chosen prepaid plans. By only sparsely using network-based vi-
sualization tools (such as pointcloud or camera output streams), we had more
than 50% of our 20GB limit available by the end of the tournament, hence it
turned out to be a feasible solution.

4 Architecture and Middleware

The software system of the Carologistics robots combines two different middle-
wares, Fawkes [13] and ROS [19]. This allows us to use software components
from both systems. The overall system, however, is integrated using Fawkes.
Adapter plugins connect the systems, for example to use ROS’ 3D visualiza-
tion capabilities. The overall software structure is inspired by the three-layer
architecture paradigm [5], as shown in Figure 5. It consists of a deliberative
layer for high-level reasoning, a reactive execution layer for breaking down high-
level commands and monitoring their execution, and a feedback control layer for
hardware access and functional components. The communication between single
components – implemented as plugins – is realized by a hybrid blackboard and
messaging approach [13].

Vision · · ·

AMCL Motion Components
Actuator/Sensor proc.

Localization, etc.

Behavior Engine Reactive Behaviors
Skill execution/monitoring

CLIPS Executive
Deliberation
Decision making/planning

Fig. 5: Behavior Layer Separation [17]

Recent work within Fawkes in-
cludes the support to couple the
reasoning component CLIPS Ex-
ecutive (CX) with multiple reac-
tive behaviour engines (cf. Sec-
tion 7.1) of remote Fawkes in-
stances. This enabled us to use
Fawkes to build a centralized rea-
soner controlling the robots to ful-
fill the tasks of the RCLL (see Sec-
tion 7). Now each Robotino runs
a Fawkes instance without a reasoning unit along with a ROS-based navigation
stack (cf. Section 5). Additionally, a central computer runs a Fawkes instance
with the CX (see Section 7.2) that deliberates about the production strategy
and sends commands to the behavior engines running on the robots.

Also, while the current setup offers bridging capabilities between Fawkes and
ROS, as ROS 2 [22] becomes more prominent, we also implemented interfaces
between Fawkes and ROS 2 to prepare for a future switch to ROS 2. Since the
Carologistics are using Fedora as operating system on the Robotino platforms,
which is not officially supported by ROS 2, we work on providing appropriate
packages as we already do for ROS 15. Moreover, as an entry point of ROS 2 into
the RCLL, we are currently porting the Robotino hardware driver from Fawkes
to ROS 2. The Fawkes driver directly uses the hardware interfaces instead of the
Robotino REST API, which lacks reliable time stamps.

5 https://copr.fedorainfracloud.org/coprs/thofmann/ros/



5 Towards Path Planning in ROS 2

Our current setup utilizes our navigation stack as described in [6]. As a first use
case for ROS 2 we actively work towards a multi-agent path finding (MAPF)
solution with the help of the ROS 2 Navigation framework [11]. With the MAPF
approach, it is possible to handle narrow situations or intersection scenarios,
which are well known problems for our current single-agent navigation solution.

However, as the work on the ROS 2 solution is still in active development
and not yet ready for usage in competitions, we chose to deploy the ROS based
navigation from previous years. Notably, the network middlware DDS6 deployed
in ROS 2 is quite complex and we could not configure it robustly, which some-
times caused faulty pose state estimations leading to unpredictable navigation
behaviour.

6 Perception

Fig. 6: Object detection with YOLO [23]. It detects objects of the three classes
conveyor belt (green), workpiece (blue), and slide (red).

Every production step in the RCLL comes down to a pick-and-place task
on or from a narrow conveyor belt that is only a few millimeters wider than
the workpiece itself. Since producing a medium-high complexity product can
already involve 18 pick or place operations and a single manipulation error is
likely to result in total loss of the product, reliability (and therefore precision) is
of paramount importance. In previous years [6], we have relied on a multi-stage
procedure to detect conveyor belts of the target MPS stations. At its core, our
previous approach used a model fitting approach based on the Iterative Closest
Point (ICP) algorithm. It iteratively compared the current RGB/D pointcloud
to a previously recorded model of the goal location (e.g., the conveyor belt) and
computed a transformation from the current to the target position [2]. While this

6 https://www.dds-foundation.org/



approach worked reliably, the iterative model matching of pointclouds made it
comparably slow. Also, the approach relied on a good quality of the reference
pointcloud, minor modifications to the machines often resulted in failed manip-
ulation attempts.

For these reasons, we have replaced the pointcloud-based method by a simpler
approach that only uses RGB camera images and point-based visual servoing
(PBVS). It uses YOLOv4 [20,3] to detect objects in the image of the RGB
camera, as shown in Figure 6. The approach works in several stages [23]:

1. As long as the object of interest has not been detected near the expected
position, the robot navigates to a pre-defined position near the expected goal
location.

2. As soon as an object of the correct class has been detected in proximity
to the expected position, the robot’s base and its gripper are positioned
simultaneously, using a closed-loop position-based visual servoing approach.

3. Once the robot reaches a position near the goal position, the robot’s base is
stopped while the PBVS task continues to position the gripper relative to
the detected object.

The visual servoing task iteratively computes the distance between the cur-
rent robot’s pose and the goal pose based on the current object position. There-
fore, the object detection needs to be fast enough to match with the control
frequency of the robot. While YOLOv4 performed better, YOLOv4-tiny was
sufficiently precise and fast enough for this task.

6.1 ARUCO Tag Detection

As of 2022 the rulebook of the RCLL requires ARUCO tags [24] in order to
represent type and side of each machine. In comparison to the previously used
ALVAR approach, ARUCO tags are commonly used and software solutions are
widely available. We opted for the OpenCV based implementation7 which re-
quired proper integration into Fawkes. During the development we encountered
the need to actively calibrate the cameras for each robot to achieve a usable re-
ported tag pose. The ALVAR-based solution did not require active calibration.

7 Behavior Engine and High-Level Reasoning

In the following we describe the reactive and deliberative layers of the behavior
components. In the reactive layer, the Lua-based behavior engine provides a set
of skills. Those skills implement simple actions for the deliberative layer, which
is realized by an agent based on the CX [16], a goal reasoning framework that
supports multi-agent coordination.

7 https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html

https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html


7.1 Lua-based Behavior Engine

In previous work we have developed the Lua-based Behavior Engine (BE) [14]. It
serves as the reactive layer to interface between the low- and high-level systems.
The BE is based on hybrid state machines (HSM). They can be depicted as a
directed graph with nodes representing states for action execution, and/or moni-
toring of actuation, perception, and internal state. Edges denote jump conditions
implemented as Boolean functions. For the active state of a state machine, all
outgoing conditions are evaluated, typically at about 15Hz. If a condition fires,
the target node of the edge becomes the active state. A table of variables holds
information like the world model, for example storing numeric values for ob-
ject positions. It remedies typical problems of state machines like fast growing
number of states or variable data passing from one state to another. Skills are
implemented using the light-weight, extensible scripting language Lua.

7.2 Reasoning and Planning with the CLIPS Executive

We implemented an agent based on the CLIPS Executive (CX) [16], which uses
a goal reasoning model [1] based on the goal lifecycle [21]. A goal describes
objectives that the agent should pursue and can either achieve or maintain a
condition or state. The program flow is determined by the goal mode, which
describes the current progress of the goal. The mode transitions are determined
by the goal lifecycle, which is depicted in Figure 7. When a goal is created, it is
first formulated, merely meaning that it may be relevant to consider. The goal
reasoner may decide to select a goal, which is then expanded into one or multiple
plans, either by using manually specified plans or automatic planners such as
PDDL planners [15]. The reasoner then commits to one of those plans, which is
dispatched, typically by executing skills of the behavior engine. Eventually, the
goal is finished and the outcome is evaluated to determine the success of the
goal.

7.3 Central Coordination

We utilize the CLIPS Executive framework to implement a central reasoner,
which dispatches skill commands to the individual robots via the remote black-
board feature of Fawkes. In contrast to the distributed incremental approach pur-
sued in the past [6,8], the central reasoner only maintains a single worldmodel,
without the overhead of complex coordination and synchronization mechanisms
required in the previous approach.

Setup An off-field laptop runs a Fawkes instance with the CLIPS Executive and
its dependencies. It connects to the blackboards of the remote Fawkes instances
running on each Robotino over a TCP socket by subscribing as a reader to
all necessary interfaces. This allows the central agent to read data from and
send instructions to the robots. The most crucial communication channel is the



Skiller interface, which is used to trigger skill execution and obtain feedback.
Exploration tasks may require sensory feedback to locate machines based on
their tags and laser feedback. The exploration results are then sent back to the
navigator on the robots.

However, sending raw sensor data via the network can be a drawback of
this setup compared to our previous distributed approach, where only processed
worldmodel data was shared. This is especially critical in competitions where
bandwidth and connection quality is suboptimal. To avoid this issue, the data
could be pre-processed on the robot such that only the relevant information is
sent, which is planned in the future.

FORMULATED

SELECTED

EXPANDED

COMMITTED

DISPATCHED

FINISHED

EVALUATED

RETRACTED

Goal Reasoner

Choose among goals

Expander generates plan

Commit to a plan or sub-goal

Acquire goal resources

Action selection and execution

Evaluation of goal outcome

CX/System

R
e
je
c
ti
o
n

R
e
-i
n
it
ia
te

m
o
n
it
o
ri
n
g
(m

a
in
te
n
a
n
c
e
g
o
a
l
o
n
ly
)

Fig. 7: The goal lifecycle with all
possible goal modes [16].

Central Goal Reasoning In contrast
to our previous incremental approach [8],
our new approach focusses on a long-term
strategy, driven by a two-layer system:
Decisions to commit to an order result in
the creation of a goal tree with all neces-
sary goals to build the requested product.
Those decisions are made by filtering all
available orders according to multiple cri-
teria, such as estimated feasibility of at-
tached time constraints, expected points
and the workload required on each ma-
chine to assemble the product. Support-
ive steps, such as providing material to
mount rings or caps are not part of the
order-specific trees, but rather are main-
tained dynamically in a separate tree that
contains all those tasks across all pur-
sued orders and may perform optimiza-
tions based on the requested support tasks
(e.g., providing a cap to a cap station
yields a waste product at that cap sta-
tion, which can be used as material at a ring station if any pursued order needs
it, else it needs to be discarded). Essentially, the goal creation step defines the
long-term strategy and goals for specific orders persist as long as the order is ac-
tively pursued. Figure 8 shows which goals are created if an order of complexity
1 and with a single material required to mount the ring is chosen.

The second layer consists of short-term decisions such as the distribution of
robots to the respective goals, which is done lazily. Whenever a robot is idling, the
reasoner evaluates the set of formulated goals that are currently executable for
that robot and selects one among them. The selection is made by again filtering
all the possible candidates. However, the criteria are much less complex and for
now are based on a static priority of each goal (depending on the complexity of



the belonging order), as well as constraints imposed through the corresponding
goal tree (e.g., if goals must be executed in sequence).

Execution Monitoring In order to become resilient to failures during the
game, we handle execution errors in similar fashion as the distributed agent did:
The damage is assessed, the worldmodel is updated accordingly and recovery
methods are invoked if necessary (e.g., retrying failed actions or removing a goal
tree, when the associated product is lost). In addition to the implications of a
failed goal, the central agent needs to recognize a robot that not responding,
de-allocate assigned tasks from it and react on successful maintenance. This is
realized through a heartbeat signal, which is sent periodically by each robot.
Lastly, the central agent itself may suffer a critical error that completely shuts
it down. Even then the system is able to pick up on the work done so far by
maintaining a persistent backup of the current worldmodel in a database and by
restoring it, if necessary.
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Fig. 8: Structure of goal trees for a single order. Ellipsis nodes are inner nodes,
where blue ones always select the highest executable goal among them, while
green ones only select the left-most child goal. Orange nodes denote the actual
goals that are physically executed, either through the robots, or by the central
instance itself, incase it only involves communication with the refbox.

8 Conclusion

In 2022, we have deployed a central agent based on the CLIPS Executive, which
provides an explicit goal representation including plans and actions with their
preconditions and effects. Focus was put on making explicit decisions about
the orders that should be started. We replaced our established reasoner that
grew over many past competitions, because we believe that its heavy focus on
robustness made substantial tradeoffs to peak performance, which is not neces-
sary anymore. This is mainly due to our matured gripping system. Unexpected



side effects due to the dependency on a centralized reasoning server arrived in
the form of WiFi issues, which we managed to overcome by utilizing cellular
network-based communication with the help of a VPN and USB tethering from
off-the-shelf smartphones.

Our perception setup is extended by a machine learning approach to detect
workpieces, conveyor belts, and slides, which is used to approach the object with
closed-loop visual servoing. This procedure turned out to be more robust and
faster compared to our previous pointcloud-based approach.

A lot of effort was put into the integration of ROS 2 and towards multi-
agent path planning to ensure fast and reliable navigation in tight and narrow
environments. While not finished yet, important steps such as bridging Fawkes
and ROS 2 are already implemented. We recon that completely exchanging most
of our major components was an ambitious roadmap and the ROS 2 integration
could not be finished yet, due to the amount of other tasks we worked on.
Nevertheless, we believe that the decision to switch to ROS 2 is right and will
benefit us in future competitions.
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