
Learning Generalized Policies for
Fully Observable Non-Deterministic Planning Domains

Till Hofmann and Hector Geffner

RWTH Aachen University

Learning Generalized Policies for
Fully Observable Non-Deterministic Planning Domains

Till Hofmann and Hector Geffner

RWTH Aachen University

At a Glance
•Generalized planning: solve a class of problems with a single policy

•Learning generalized policies has shown to be feasible for classical planning

•Observation: FOND planning is classical planning + dead-end detection

•Key Idea: Learn a classical policy on the deterministic relaxation while also avoiding FOND dead-ends

•Result: For many domains, the learned policy can be proven to generalize correctly

Generalized Classical Planning
Given a class Q = {P1, P2, . . .} of (classical) planning
problems over the same domain:

•We assumeQ is closed : if s is a solvable state in P ∈ Q,
then P [s] ∈ Q (i.e., P with initial state s)

•Concrete policy: partial mapping πP : S → 2A from
states s to sets of actions πP (s) ⊆ A(s)

•Policy πP solves problem P if all maximal π-trajectories
end in a goal state

•General policy: partial mapping π : Q → Π from
problem instance P ∈ Q to concrete policy π(P) = πP

•General policy π solves Q if every π(P) solves P ∈ Q
•Policy language: policy consists of a set R of QNP-like
rules C 7→ E over a collection Φ of features

•Feature pool: Boolean and numerical description logic
features over domain predicates

• Semantics: state transition (s, s′) satisfies a rule C 7→
E if all feature conditions in C are true in s and the
feature values change from s to s′ according to E

•For P ∈ Q, the general policy π defines πP as follows:
a ∈ πD(s) if f (a, s) = s′ and (s, s′) satisfies a rule of π

Generalized FOND Planning

•Actions may have multiple (non-deterministic) out-
comes, chosen by the environment

•Fairness: for an infinitely occurring action a, all out-
comes a1, a2, . . . occur infinitely often

• Strong-cyclic: all max. fair trajectories reach goal

•Deterministic relaxation: non-deterministic action a
is replaced by deterministic actions a1, a2, . . .

s1 s2

s3 s4 s5

s6

s7

s8
a1,1

a1,2

a2,1
a2,2

a3,1

a3,2

a4,1

a4,2

a7,1

a7,2
a3

a6,2

a6,1

relaxation dead-endsFOND dead-ends

Observation: A policy πD for the deterministic relaxation
PD is a policy for the original FOND problem P if it avoids
all FOND dead-ends

→Learn a classical general policy + state constraints

→Encode state constraints B like conditions C,
but describing bad states

Theorem (simplified). If rules R encode a general clas-
sical policy for QD that avoids FOND dead-ends and
state constraints B describe the dead-ends, then πR,B

consisting of rules R and state constraints B is a
general FOND policy for Q.

Paper Poster Code

Learning Generalized

FOND Policies
Approach:

1. Sample closed class of small FOND problems Q′ ⊂ Q
2. Generate feature pool over domain predicates, using a
description logic feature language

3. Learn general policy that solves the classical problems
Q′

D and avoids FOND dead-ends

4. Learn a set of constraints B for the dead-end states

⇒ Encode policy and constraints as SAT problem

Propositional variables

•Good(s, s′) is true if the transition (s, s′) is good

• Select(f) is true if the feature f is selected

Formulas

1. For every alive state s, select at least one good transition
from the safe actions:∨

a∈Safe(s)

∨
s′∈F (a,s)

Good(s, s′)

where a ∈ Safe(s) if no s′ ∈ F (a, s) is a dead-end.

2. Goal states have distance 0, i.e., for every goal state s:

V (s, 0)

3. For every alive state s, choose a goal distance:

Exactly-1
d∈N

: {V (s, d)}

4. For every good transition (s, s′), there must be one out-
come leading towards the goal:

Good(s, s′) ∧ V (s, d) →∧
a∈A(s):
s′∈F (a,s)

∨
s′′∈F (a,s)

V (s′′, d′′) → d′′ < d

5. There cannot be any good transitions to dead states,
i.e., for every alive state s and dead state s′:

¬Good(s, s′)

6. For every goal state s and non-goal state s′:∨
f :Jf (s)K ̸=Jf (s′)K

Select(f)

7. For every alive state s and dead state s′:∨
f :Jf (s)K̸=Jf (s′)K

Select(f)

8. Every pair of a good transition (s1, s
′
1) and non-good

transition (s2, s
′
2) must be distinguishable by a feature:

Good(s1, s
′
1) ∧ ¬Good(s2, s

′
2) →

D(s1, s2) ∨D2(s1, s
′
1, s2, s

′
2)

where

D(s1, s2) =
∨

f :Jf (s1)K̸=Jf (s2)K

Select(f)

and

D2(s1, s
′
1, s2, s

′
2) =

∨
f :∆f(s1,s′1) ̸=∆f(s2,s′2)

Select(f)

Implementation

• SAT problem solved with clingo (Gebser et al. 2011)

•Optimizations:

–Ranking V (s, d) replaced by labeling safe states
(safe: all children are safe, goal states always safe)

–Only distinguish critical states from alive states
(critical : dead-end but alive parent)

Extracting a General FOND Policy

n = 2
B

n = 1
B

n = 0
¬B

n = 1
¬B

n = 2
¬B

n = 3
¬B

n = 1
¬B

n = 0
B

a1,1

a1,2

a2,1
a2,2

a3,1

a3,2

a4,1

a4,2

a7,1

a7,2
a3

a6,2

a6,1

relaxation dead-endsFOND dead-ends

Policy 1 solves the deterministic relaxation, but does not
avoid FOND dead-ends

Policy 2 solves the determinstic relaxation and avoids
FOND dead-ends ⇒ general FOND policy

The extracted policy has the following rules:

r1 : {n > 0, B} 7→ {n↓}
r2 : {n > 0, B} 7→ {¬B, n↑}
r3 : {n > 0,¬B} 7→ {n↑} | {n↓, B}

It has the following state constraint:

b1 : {n = 0,¬B}

Example: Acrobatics

climb walk

walk

jump

The learned policy πacro uses three features:

1. Distance d ≡ dist(position, next -fwd , positionG) be-
tween the current position and the goal position,

2. Boolean feature U ≡ |up| which is true if the agent is
currently on the beam,

3. Boolean feature B ≡ |broken-leg | which is true if the
agent’s leg is broken.

The learned policy πacro = πR,B consists of the following
rules R:

r1 : {U, d > 0,¬B} 7→ {d↓}
r2 : {¬B,¬U} 7→ {U} | {d↑}

It has a single constraint B = {b1}:
b1 : {B,¬U}

Proposition.The general policy πacro solves the class
Qacro of solvable acrobatics problems.

Evaluation

Q #
p
ro
b
le
m
s

#
so
lv
ed

#
tr
ai
n
in
g
p
.

#
ob

j
(t
ra
in
)

t s
ol
ve
/s

#
fe
at
u
re
s

#
se
l.
fe
at
u
re
s

#
co
n
st
ra
in
ts

m
ax

co
m
p
le
x.

p
ol
ic
y
co
st

acrobatics 18 18 3 3 0.12 23 3 1 4 6
beam-walk 9 9 2 3 0.05 22 2 0 4 5
blocks3ops 95 95 4 4 3:44 194 3 0 5 11
blocks-clear 95 95 2 3 1.5 34 2 0 4 6
blocks-on 190 190 2 3 1:56 704 3 0 6 11
doors 19 19 5 7 1:18 625 4 1 10 19
first-resp 99 15M 2 5 33:40 332 5 2 7 20
islands 300 300 4 32 1h 1182 4 1 7 13
miner 69 13I 2 9 297h 1073 8 4 6 28
spiky-tire 170 36I 3 6 1h 479 8 5 8 36
tireworld 980 7C 1 3 0.11 27 5 4 4 12
triangle-tire 10 1I 1 6 0.29 27 3 1 4 9

International Joint Conference on Artificial Intelligence (IJCAI), Aug 3–Aug 9, 2024, Jeju, South Korea

