LEARNING GENERALIZED POLICIES FOR Fully Observable Non-Deterministic Planning Domains

Till Hofmann and Hector Geffner

RWTH Aachen University

At a Glance

- Generalized planning: solve a *class* of problems with a single policy
- Learning generalized policies has shown to be feasible for classical planning
- **Observation:** FOND planning is classical planning + dead-end detection
- Key Idea: Learn a classical policy on the deterministic relaxation while also avoiding FOND dead-ends
- **Result:** For many domains, the learned policy can be proven to generalize correctly

Generalized Classical Planning

Given a class $\mathcal{Q} = \{P_1, P_2, \ldots\}$ of (classical) planning problems over the same domain:

Learning Generalized **FOND Policies**

Approach:

Extracting a General FOND Policy

FOND dead-ends relaxation dead-ends

Policy 1 solves the deterministic relaxation, but does not

- We assume \mathcal{Q} is *closed*: if s is a solvable state in $P \in \mathcal{Q}$, then $P[s] \in \mathcal{Q}$ (i.e., P with initial state s)
- Concrete policy: partial mapping $\pi_P: S \to 2^A$ from states s to sets of actions $\pi_P(s) \subseteq A(s)$
- Policy π_P solves problem P if all maximal π -trajectories end in a goal state
- General policy: partial mapping $\pi : \mathcal{Q} \to \Pi$ from problem instance $P \in \mathcal{Q}$ to concrete policy $\pi(P) = \pi_P$
- General policy π solves \mathcal{Q} if every $\pi(P)$ solves $P \in \mathcal{Q}$
- Policy language: policy consists of a set R of QNP-like rules $C \mapsto E$ over a collection Φ of features
- Feature pool: Boolean and numerical description logic features over domain predicates
- Semantics: state transition (s, s') satisfies a rule $C \mapsto$ E if all feature conditions in C are true in s and the feature values change from s to s' according to E
- For $P \in \mathcal{Q}$, the general policy π defines π_P as follows: $a \in \pi_D(s)$ if f(a, s) = s' and (s, s') satisfies a rule of π

Generalized FOND Planning

- 1. Sample closed class of small FOND problems $\mathcal{Q}' \subset \mathcal{Q}$ 2. Generate feature pool over domain predicates, using a description logic feature language
- 3. Learn general policy that solves the classical problems \mathcal{Q}'_D and avoids FOND dead-ends
- 4. Learn a set of constraints B for the dead-end states
- \Rightarrow Encode policy and constraints as SAT problem

Propositional variables

• Good(s, s') is true if the transition (s, s') is good • Select(f) is true if the feature f is selected

Formulas

1. For every alive state s, select at least one good transition from the safe actions:

Good(s, s')

- $a \in Safe(s) \ s' \in F(a,s)$ where $a \in Safe(s)$ if no $s' \in F(a, s)$ is a dead-end.
- 2. Goal states have distance 0, i.e., for every goal state s:

V(s,0)

avoid FOND dead-ends

Policy 2 solves the deterministic relaxation and avoids FOND dead-ends \Rightarrow general FOND policy

The extracted policy has the following rules:

 $r_1: \quad \{n > 0, B\} \mapsto \{n \downarrow\}$ $r_2: \quad \{n > 0, B\} \mapsto \{\neg B, n\uparrow\}$ $r_3: \{n > 0, \neg B\} \mapsto \{n\uparrow\} \mid \{n\downarrow, B\}$

It has the following state constraint:

 $b_1: \{n = 0, \neg B\}$

Example: Acrobatics

- Actions may have multiple (non-deterministic) outcomes, chosen by the environment
- Fairness: for an infinitely occurring action a, all outcomes a_1, a_2, \ldots occur infinitely often
- Strong-cyclic: all max. fair trajectories reach goal
- Deterministic relaxation: non-deterministic action a is replaced by deterministic actions a_1, a_2, \ldots

FOND dead-ends relaxation dead-ends

Observation: A policy π_D for the deterministic relaxation P_D is a policy for the original FOND problem P if it avoids all FOND dead-ends

- \rightarrow Learn a classical general policy + state constraints
- \rightarrow Encode state constraints B like conditions C, but describing *bad* states

- 3. For every alive state s, choose a goal distance: Exactly-1 : $\{V(s,d)\}$ $d \in \mathbb{N}$
- 4. For every good transition (s, s'), there must be one outcome leading towards the goal:

$$\begin{aligned} & Good(s,s') \wedge V(s,d) \rightarrow \\ & \bigwedge_{\substack{a \in A(s): \\ s' \in F(a,s)}} \bigvee_{s'' \in F(a,s)} V(s'',d'') \rightarrow d'' < d \end{aligned}$$

5. There cannot be any good transitions to dead states, i.e., for every alive state s and dead state s':

 $\neg Good(s, s')$

6. For every goal state s and non-goal state s': Select(f) $f{:}\llbracket f(s) \rrbracket \neq \llbracket f(s') \rrbracket$ 7. For every alive state s and dead state s':

> Select(f) $f{:}\llbracket f(s) \rrbracket \neq \llbracket f(s') \rrbracket$

8. Every pair of a good transition (s_1, s'_1) and non-good transition (s_2, s'_2) must be distinguishable by a feature: $Good(s_1, s_1') \land \neg Good(s_2, s_2') \rightarrow$ $D(s_1, s_2) \lor D2(s_1, s'_1, s_2, s'_2)$

The learned policy π_{acro} uses three features:

- 1. Distance $d \equiv \operatorname{dist}(position, next-fwd, position_G)$ between the current position and the goal position,
- 2. Boolean feature $U \equiv |up|$ which is true if the agent is currently on the beam,
- 3. Boolean feature $B \equiv |broken-leg|$ which is true if the agent's leg is broken.

The learned policy $\pi_{acro} = \pi_{R,B}$ consists of the following rules R:

> $r_1: \{U, d > 0, \neg B\} \mapsto \{d\downarrow\}$ $r_2: \qquad \{\neg B, \neg U\} \mapsto \{U\} \mid \{d\uparrow\}$

It has a single constraint $B = \{b_1\}$:

 $\{B, \neg U\}$ b_1 :

Proposition. The general policy π_{acro} solves the class Q_{acro} of solvable acrobatics problems.

I	Evaluation			
ms	g p. ain)	S	tures aints plex. st	

Theorem (simplified). If rules R encode a general classical policy for \mathcal{Q}_D that avoids FOND dead-ends and state constraints B describe the dead-ends, then $\pi_{R,B}$ consisting of rules R and state constraints B is a general FOND policy for Q.

where $D(s_1, s_2) =$ Select(f) $f:[[f(s_1)]] \neq [[f(s_2)]]$ and $D2(s_1, s_1', s_2, s_2') =$ Select(f) $f:\Delta_f(s_1,s_1') \neq \Delta_f(s_2,s_2')$

Implementation

- SAT problem solved with clingo (Gebser et al. 2011) • Optimizations:
- -Ranking V(s, d) replaced by labeling safe states (*safe*: all children are safe, goal states always safe)
- -Only distinguish *critical* states from alive states (*critical*: dead-end but alive parent)

\sim	≠ proble	≠ solved	∉ trainin	≠ obj (tr	solve/S	≠ feature	≠ sel. fea	£ constra	nax com	olicy cos
\mathcal{Q}	+F	#	+F	+		#	+F	+F	IJ	Q
acrobatics	18	18	3	3	0.12	23	3	1	4	6
beam-walk	9	9	2	3	0.05	22	2	0	4	5
blocks3ops	95	95	4	4	3:44	194	3	0	5	11
blocks-clear	95	95	2	3	1.5	34	2	0	4	6
blocks-on	190	190	2	3	1:56	704	3	0	6	11
doors	19	19	5	7	1:18	625	4	1	10	19
first-resp	99	15^{M}	2	5	33:40	332	5	2	7	20
islands	300	300	4	32	1h	1182	4	1	7	13
miner	69	13^{I}	2	9	297h	1073	8	4	6	28
spiky-tire	170	36^{I}	3	6	1h	479	8	5	8	36
tireworld	980	7 ^C	1	3	0.11	27	5	4	4	12
triangle-tire	10	1^{I}	1	6	0.29	27	3	1	4	9

International Joint Conference on Artificial Intelligence (IJCAI), Aug 3–Aug 9, 2024, Jeju, South Korea