Strategy Synthesis for First-Order
Agent Programs over Finite Traces

35th Nordic Workshop on Programming Theory

Till Hofmann, Jens ClaBen

November 6, 2024

High-Level Reasoning on Robots

What is high-level reasoning in cognitive robotics?
P> Given: A skilled robot capable of doing primitive actions,
e.g., pick, goto
» Goal: Determine what the robot is supposed to do
» Different methods how to accomplish this, e.g.,

® task planning (i.e., heuristic search)
® agent programs
® reactive synthesis

Till Hofmann, Jens ClaBen Motivation - High-Level Reasoning on Robots e o 0 o 1/14

High-Level Reasoning on Robots

What is high-level reasoning in cognitive robotics?
P> Given: A skilled robot capable of doing primitive actions,
e.g., pick, goto
» Goal: Determine what the robot is supposed to do
» Different methods how to accomplish this, e.g.,

® task planning (i.e., heuristic search)
® agent programs
® reactive synthesis

Till Hofmann, Jens ClaBen Motivation - High-Level Reasoning on Robots e o 0 o 1/14

The Situation Calculus and &S

» Situation calculus (McCarthy and Hayes 1969):
Formal framework based on First-order logic for describing dynamically changing worlds

» &S: A modal variant of the situation calculus (Lakemeyer and Levesque 2010)

® Modality [a]¢: ¢ holds after performing action
® Modality O¢: ¢ holds after any sequence of actions

» All changes in the world are caused by actions
» Fluent: relation that may change its value from situation to situation

» A situation z € Z is a sequence of actions describing the current state of the world, e.g.,
z = goto(roomy), load(cup,, roomy), goto(kitchen), unload(cup,)
> A world w € VV assigns a truth value to every fluent in every possible situation:

w:Prx Z*—{0,1}

Till Hofmann, Jens ClaBen Motivation - High-Level Reasoning on Robots o e o o 2 /14

Basic Action Theories

A basic action theory (BAT) axiomatizes the world:

» The initial situation Dy describes the (possibly incomplete) initial state, e.g.:
At(kitchen) A =3x OnRobot(x)
» The precondition axiom Dy states when each action can be performed:
O Poss(unload(x)) = OnRobot(x) A At(kitchen)
» The successor state axioms (SSAs) Dpost describe how actions change fluents:
O[a] OnRobot(x) = Ty.a = load(x,y)V OnRobot(x) A a # unload(x)
We can use a first-order theorem prover to check entailment, e.g.,:

D = [goto(roomy)][load(cup,, room;)]3x OnRobot(x)

Till Hofmann, Jens ClaBen Motivation - High-Level Reasoning on Robots © o @ o 3/14

High-Level Programming with Golog

GoLOG: High-level agent programming language
» Imperative language tailored to specify agent behavior

» Atomic instructions: &S actions

loop:
“I,)h“e 3x. OnRobot(x) do » Allows nondeterministic constructs:
wx:{di,...,dn}. unload(x); 7(x) Pick a value for variable x
mwy :{r,...,rm}. goto(y); 0* Repeat sub-program §
while 3x. DirtyDish(x, y) do 91/|62 Choose between 41 and &
mx:{di,...,dn}. load(x,y); 01||02 Interleaved concurrency
goto(kitchen) loop and while can be defined as macros

» New modality [d]¢:
after every possible execution of program 9, ¢ holds

Till Hofmann, Jens ClaBen Motivation - High-Level Reasoning on Robots o o o e 4 /14

What is missing?

> GOLOG allows expressing abstract behavior in an expressive language
> However: Assumes angelic nondeterminism, i.e., agent may choose which branch to follow
» Hence, all changes in the worlds follow the agents choices

» Unrealistic in many real-world settings:

® Actions may have unintended effects, e.g., dropping a cup while moving
® Humans may interfere and change the world, e.g., placing a new dirty dish on the table
® The agent may need to react to requests — temporal goals

Till Hofmann, Jens ClaBen Motivation - Program Realization as Synthesis o o 5/ 14

Program Realization as Synthesis

» |dea: Also model uncontrollable behavior as part of the agent program, e.g.,
during execution, a new dirty dish may appear in any room:

loop: 7x :{di,....,dm},y : {r,...,m}.newDish(x,y)
» Partition all actions into controllable and uncontrollable actions

» Program realization now becomes a synthesis task:
Determine a successful execution of the program while considering all possible environment choices

» Here: Goal given as LTL formula ®, interpreted over finite traces, e.g.,
F G —3x,y. DirtyDish(x,y)

» Task: Given a GOLOG program P = (D,) and a partitioning of the actions, find a policy m:
® 71 must follow the program ¢
® 7 must allow all possible environment actions
® Every 7 trace must satisfy ®

Till Hofmann, Jens ClaBen Motivation - Program Realization as Synthesis o o 6 /14

Solving the Synthesis Problem: Main Challenges

@ First-order logic and thus &S is undecidable

® Check the satisfaction of the temporal goal ®

© Determine a strategy that executes the program J and satisfies ®

Till Hofmann, Jens ClaBen Approach - Overview

7/14

Solving the Synthesis Problem: Main Challenges

@ First-order logic and thus &S is undecidable
— Need to find a decidable fragment
® Check the satisfaction of the temporal goal ®

© Determine a strategy that executes the program J and satisfies ®

Till Hofmann, Jens ClaBen Approach - Overview 7/ 14

Solving the Synthesis Problem: Main Challenges

@ First-order logic and thus &S is undecidable
— Need to find a decidable fragment

® Check the satisfaction of the temporal goal ®
— Split ® into two parts:

@ Sub-formulas that are satisfied in the current state
@® Sub-formulas that must be satisfied in some future state

© Determine a strategy that executes the program J and satisfies ®

Till Hofmann, Jens ClaBen Approach - Overview 7/ 14

Solving the Synthesis Problem: Main Challenges

@ First-order logic and thus &S is undecidable
— Need to find a decidable fragment

® Check the satisfaction of the temporal goal ®
— Split ® into two parts:

@ Sub-formulas that are satisfied in the current state
@® Sub-formulas that must be satisfied in some future state

© Determine a strategy that executes the program J and satisfies ®

— Game-theoretic approach: construct a finite game arena and label recursively

Till Hofmann, Jens ClaBen Approach - Overview

7/14

Step 1: Decidable Fragment

ZarrieB and ClaBen 2016 describe a decidable fragment of £SG for verification:
@ The base logic is restricted to the two-variable fragment of FOL with counting (C?)

@® Successor state axioms must be acyclic; i.e., if an effect on F depends on some fluent F’, then any
effect on F/ may not depend on F

©® The pick operator m may only pick from a finite set of ground terms

Till Hofmann, Jens ClaBen Approach - Decidable Reasoning in E&S e o 8 /14

Step 1: Decidable Fragment

ZarrieB and ClaBen 2016 describe a decidable fragment of £SG for verification:
@ The base logic is restricted to the two-variable fragment of FOL with counting (C?)

@® Successor state axioms must be acyclic; i.e., if an effect on F depends on some fluent F’, then any
effect on F/ may not depend on F

©® The pick operator m may only pick from a finite set of ground terms

With these restrictions, we can define a finite abstraction of a GOLOG program P = (D, 4):
» A characteristic graph is a finite representation of the program expression §
» Due to restriction 3, only finitely many ground actions A may occur

> With 2, a program may only accumulate finitely many effects
— collect them in a set ¢PA

Till Hofmann, Jens ClaBen Approach - Decidable Reasoning in E&S e o 8 /14

Step 1: Decidable Fragment by Means of Finite Abstraction

» Finally, the context C(P) is a finite set of formulas consisting of:
® sentences in the initial theory
® context conditions in the SSAs
® formulas in guards and termination conditions of the program
® &S sub-formulas in the temporal goal ®

» There are infinitely many worlds w € W with w = D
» However, we only have finitely many effects ¢ and a finite context C(P)

— Define an equivalence relation among worlds where two worlds are equivalent if they satisfy the
same context formulas after the same sequence of actions

» Each equivalence class is represented by the type:

type(w) = {(#, E) | w |= R[E,¢] }

context condition /\ /\ effect from @D-A

from C(P)

Till Hofmann, Jens ClaBen Approach - Decidable Reasoning in ES o e 9 /14

Step 2: Tracking the satisfaction of ¢

» LTLris like LTL, but interpreted over finite traces (De Giacomo and Vardi 2015)

> Here: same syntax, but replacing propositions with &S fluent sentences
=0 | PANDP | XD |PUD

» We adopt two notions from (Li et al. 2020):
@ Tail Normal Form (TNF): introduce explicit proposition Tail that marks the last state of a trace, e.g.,

tnf(@l Z/I (I)g) = (" Tazl A tl’lf(‘i)l)) L{ tnf(q)g)

® neXt Normal Form (XNF): transform formulas such that outermost temporal operator is X, e.g.,

an(q)l U (I)Q) = an((bg) \ (an(q)l) N X(q)l U (I’Q))

Till Hofmann, Jens ClaBen Approach - LTLs Satisfaction e o 10 / 14

Step 2: Tracking the satisfaction of ¢

> With XNF, we can interpret an LTLf formula ® as propositional formula ®”
» Each temporal formula is a proposition
» |f ® is satisfiable, then so is ®P

» Determine propositional assignments for ®P using a SAT solver
» Split propositional assignment P intro three parts:

@® L(P)={l|Il€ P is aliteral other than (=) Tail }
® X(P)={0|Xx0€cP}
© T(P)=Tif Tail € P and T(P) = L otherwise

Till Hofmann, Jens ClaBen Approach - LTLs Satisfaction o e 11 /14

Putting Things Together: The Game Arena

» We construct a game arena Ag that captures the execution of P while tracking the satisfaction of
o

» Each state is of the form

remaining program
s=(@ E, {(xi 0:)}.0

type of the world /\
X(P;) and T(P;) of some

prop. assignment P;
» There is a transition s; — s, from s, = (1, E, A1, p1) to sp = (7, Ea, Az, po) if
® the program can transition from p; to ps by doing action «
® [, are the effects resulting from applying « in 7 on effects E;
® (x2,02) € Ay if for some (x1,61) € Ay, there is a propositional assignment P for xnf(/ x7) such that

=1 {(,E)|dbel(P)}CT xa=X(P) 02=T(P)
> A state is final if p is in a terminating configuration
> A state is accepting if (0, T) € A, i.e., @ is satisfied

= Solve the game to determine strategy

Till Hofmann, Jens ClaBen Approach - Constructing the Game 12 / 14

Example with 1 room and 1 cup

> Agent:
loop:

while 3x. OnRobot(x) do
mx : {d1}. unload(x);

my : {n}. goto(y);

while 3x. DirtyDish(x,y) do
7x : {d1}. load(x,y);

goto(kitchen)

» Environment:

loop: mx: {di},y:{rn}. newDish(x,y)
» Initial state: At(kitchen)
» Goal:

F G —3x,y. DirtyDish(x, y)

Till Hofmann, Jens ClaBen Approach - Example 13 / 14

Conclusion

» GOLOG is an expressive agent programming language based on first-order logic
> Assumption so far: The agent is under complete control

> More realistic view: Agent acts in a partially controllable environment

— Program realization is now a synthesis task with an LTLf goal

» Approach:
® Finite abstraction of the infinite program configuration space
® Use a game-theoretic approach to determine a policy

= Resulting policy guarantees to satisfy the goal, independent of the environment’s choices

Till Hofmann, Jens ClaBen Conclusion 14 / 14

Appendix

Computing a Strategy

» Based on the finite game arena A%, determine a terminating and winning strategy

terminating: The agent must eventually terminate by not choosing any actions
winning: In every terminating state, the temporal goal ® must be satisfied

» In principle, we can just start with the final+accepting states S NS4 and label bottom up

v

Problem: Even in a final4+-accepting state, the environment may continue and eventually lead into
bad states

Guess a subset H C SF N Sy

Check whether there is a strategy that enforce each play to end in H

Label nodes bottom up with T /L

Any strategy that remains in the T-labeled sub-graph is a terminating and winning strategy

vVvyyv .

Till Hofmann, Jens ClaBen Appendix - Computing a Strategy 1/2

Bibliography

[De Giacomo, Giuseppe and Moshe Y. Vardi (2015). “Synthesis for LTL and LDL on Finite Traces”.
In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI). AAAI
Press, pp. 1558-1564.

Lakemeyer, Gerhard and Hector J. Levesque (2010). “A semantic characterization of a useful
fragment of the situation calculus with knowledge". In: Artificial Intelligence 175.1, pp. 142-164.
Li, Jianwen et al. (Dec. 2020). “SAT-based Explicit LTLf Satisfiability Checking". In: Artificial
Intelligence 289, p. 103369. DOI: 10.1016/j.artint.2020.103369.

McCarthy, John and Patrick J. Hayes (1969). “Some Philosophical Problems from the Standpoint
of Artificial Intelligence”. In: Machine Intelligence 4, pp. 463-502.

ZarrieB, Benjamin and Jens ClaBen (2016). “Decidable Verification of Golog Programs over
Non-Local Effect Actions”. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence
(AAAl). AAAI Press, pp. 1109-1115.

B & B W

Till Hofmann, Jens ClaBen Appendix - Bibliography 2/2

https://doi.org/10.1016/j.artint.2020.103369

Till Hofmann, Jens ClaBBen

Copenhagen, Denmark, November 6, 2024

	Motivation
	High-Level Reasoning on Robots
	Program Realization as Synthesis

	Approach
	Overview
	Decidable Reasoning in E S
	LTL0.7f Satisfaction
	Constructing the Game
	Example

	Conclusion
	Appendix
	Appendix
	Computing a Strategy
	Bibliography

	References

