
Strategy Synthesis for First-Order
Agent Programs over Finite Traces

35th Nordic Workshop on Programming Theory

Till Hofmann, Jens Claßen

November 6, 2024
Roskilde University

High-Level Reasoning on Robots

What is high-level reasoning in cognitive robotics?
I Given: A skilled robot capable of doing primitive actions,

e.g., pick, goto
I Goal: Determine what the robot is supposed to do
I Different methods how to accomplish this, e.g.,

• task planning (i.e., heuristic search)
• agent programs
• reactive synthesis

Till Hofmann, Jens Claßen Motivation · High-Level Reasoning on Robots • ◦ ◦ ◦ 1 / 14

High-Level Reasoning on Robots

What is high-level reasoning in cognitive robotics?
I Given: A skilled robot capable of doing primitive actions,

e.g., pick, goto
I Goal: Determine what the robot is supposed to do
I Different methods how to accomplish this, e.g.,

• task planning (i.e., heuristic search)
• agent programs
• reactive synthesis

Till Hofmann, Jens Claßen Motivation · High-Level Reasoning on Robots • ◦ ◦ ◦ 1 / 14

The Situation Calculus and ES

I Situation calculus (McCarthy and Hayes 1969):
Formal framework based on First-order logic for describing dynamically changing worlds

I ES: A modal variant of the situation calculus (Lakemeyer and Levesque 2010)
• Modality [α]φ: φ holds after performing action α
• Modality �φ: φ holds after any sequence of actions

I All changes in the world are caused by actions
I Fluent: relation that may change its value from situation to situation
I A situation z ∈ Z is a sequence of actions describing the current state of the world, e.g.,

z = goto(room1), load(cup1, room1), goto(kitchen), unload(cup1)

I A world w ∈ W assigns a truth value to every fluent in every possible situation:

w : PF ×Z∗ → {0, 1}

Till Hofmann, Jens Claßen Motivation · High-Level Reasoning on Robots ◦ • ◦ ◦ 2 / 14

Basic Action Theories
A basic action theory (BAT) axiomatizes the world:
I The initial situation D0 describes the (possibly incomplete) initial state, e.g.:

At(kitchen) ∧ ¬∃xOnRobot(x)

I The precondition axiom Dpre states when each action can be performed:

�Poss(unload(x)) ≡ OnRobot(x) ∧ At(kitchen)

I The successor state axioms (SSAs) Dpost describe how actions change fluents:

�[a]OnRobot(x) ≡ ∃y . a = load(x , y) ∨ OnRobot(x) ∧ a 6= unload(x)

We can use a first-order theorem prover to check entailment, e.g.,:

D |= [goto(room1)][load(cup1, room1)]∃xOnRobot(x)

Till Hofmann, Jens Claßen Motivation · High-Level Reasoning on Robots ◦ ◦ • ◦ 3 / 14

High-Level Programming with Golog

loop:
while ∃x .OnRobot(x) do
πx : {d1, . . . , dm}. unload(x);

πy : {r1, . . . , rn}. goto(y);
while ∃x .DirtyDish(x , y) do
πx : {d1, . . . , dm}. load(x , y);

goto(kitchen)

Golog: High-level agent programming language
I Imperative language tailored to specify agent behavior
I Atomic instructions: ES actions
I Allows nondeterministic constructs:
π(x) Pick a value for variable x
δ∗ Repeat sub-program δ
δ1|δ2 Choose between δ1 and δ2
δ1‖δ2 Interleaved concurrency
loop and while can be defined as macros

I New modality [δ]φ:
after every possible execution of program δ, φ holds

Till Hofmann, Jens Claßen Motivation · High-Level Reasoning on Robots ◦ ◦ ◦ • 4 / 14

What is missing?

I Golog allows expressing abstract behavior in an expressive language
I However: Assumes angelic nondeterminism, i.e., agent may choose which branch to follow
I Hence, all changes in the worlds follow the agents choices
I Unrealistic in many real-world settings:

• Actions may have unintended effects, e.g., dropping a cup while moving
• Humans may interfere and change the world, e.g., placing a new dirty dish on the table
• The agent may need to react to requests → temporal goals

Till Hofmann, Jens Claßen Motivation · Program Realization as Synthesis • ◦ 5 / 14

Program Realization as Synthesis

I Idea: Also model uncontrollable behavior as part of the agent program, e.g.,
during execution, a new dirty dish may appear in any room:

loop: πx : {d1, . . . , dm}, y : {r1, . . . , rn}.newDish(x , y)
I Partition all actions into controllable and uncontrollable actions
I Program realization now becomes a synthesis task:

Determine a successful execution of the program while considering all possible environment choices
I Here: Goal given as LTL formula Φ, interpreted over finite traces, e.g.,

F G ¬∃x , y .DirtyDish(x , y)

I Task: Given a Golog program P = (D, δ) and a partitioning of the actions, find a policy π:
• π must follow the program δ
• π must allow all possible environment actions
• Every π trace must satisfy Φ

Till Hofmann, Jens Claßen Motivation · Program Realization as Synthesis ◦ • 6 / 14

Solving the Synthesis Problem: Main Challenges

1 First-order logic and thus ES is undecidable

→ Need to find a decidable fragment

2 Check the satisfaction of the temporal goal Φ

→ Split Φ into two parts:
1 Sub-formulas that are satisfied in the current state
2 Sub-formulas that must be satisfied in some future state

3 Determine a strategy that executes the program δ and satisfies Φ

→ Game-theoretic approach: construct a finite game arena and label recursively

Till Hofmann, Jens Claßen Approach · Overview 7 / 14

Solving the Synthesis Problem: Main Challenges

1 First-order logic and thus ES is undecidable
→ Need to find a decidable fragment

2 Check the satisfaction of the temporal goal Φ

→ Split Φ into two parts:
1 Sub-formulas that are satisfied in the current state
2 Sub-formulas that must be satisfied in some future state

3 Determine a strategy that executes the program δ and satisfies Φ

→ Game-theoretic approach: construct a finite game arena and label recursively

Till Hofmann, Jens Claßen Approach · Overview 7 / 14

Solving the Synthesis Problem: Main Challenges

1 First-order logic and thus ES is undecidable
→ Need to find a decidable fragment

2 Check the satisfaction of the temporal goal Φ
→ Split Φ into two parts:

1 Sub-formulas that are satisfied in the current state
2 Sub-formulas that must be satisfied in some future state

3 Determine a strategy that executes the program δ and satisfies Φ

→ Game-theoretic approach: construct a finite game arena and label recursively

Till Hofmann, Jens Claßen Approach · Overview 7 / 14

Solving the Synthesis Problem: Main Challenges

1 First-order logic and thus ES is undecidable
→ Need to find a decidable fragment

2 Check the satisfaction of the temporal goal Φ
→ Split Φ into two parts:

1 Sub-formulas that are satisfied in the current state
2 Sub-formulas that must be satisfied in some future state

3 Determine a strategy that executes the program δ and satisfies Φ

→ Game-theoretic approach: construct a finite game arena and label recursively

Till Hofmann, Jens Claßen Approach · Overview 7 / 14

Step 1: Decidable Fragment

Zarrieß and Claßen 2016 describe a decidable fragment of ESG for verification:
1 The base logic is restricted to the two-variable fragment of FOL with counting (C2)

2 Successor state axioms must be acyclic; i.e., if an effect on F depends on some fluent F ′, then any
effect on F ′ may not depend on F

3 The pick operator π may only pick from a finite set of ground terms

With these restrictions, we can define a finite abstraction of a Golog program P = (D, δ):
I A characteristic graph is a finite representation of the program expression δ
I Due to restriction 3, only finitely many ground actions A may occur
I With 2, a program may only accumulate finitely many effects

→ collect them in a set ED,A

Till Hofmann, Jens Claßen Approach · Decidable Reasoning in ES • ◦ 8 / 14

Step 1: Decidable Fragment

Zarrieß and Claßen 2016 describe a decidable fragment of ESG for verification:
1 The base logic is restricted to the two-variable fragment of FOL with counting (C2)

2 Successor state axioms must be acyclic; i.e., if an effect on F depends on some fluent F ′, then any
effect on F ′ may not depend on F

3 The pick operator π may only pick from a finite set of ground terms
With these restrictions, we can define a finite abstraction of a Golog program P = (D, δ):
I A characteristic graph is a finite representation of the program expression δ
I Due to restriction 3, only finitely many ground actions A may occur
I With 2, a program may only accumulate finitely many effects

→ collect them in a set ED,A

Till Hofmann, Jens Claßen Approach · Decidable Reasoning in ES • ◦ 8 / 14

Step 1: Decidable Fragment by Means of Finite Abstraction

I Finally, the context C(P) is a finite set of formulas consisting of:
• sentences in the initial theory
• context conditions in the SSAs
• formulas in guards and termination conditions of the program
• ES sub-formulas in the temporal goal Φ

I There are infinitely many worlds w ∈ W with w |= D
I However, we only have finitely many effects ED,A and a finite context C(P)

→ Define an equivalence relation among worlds where two worlds are equivalent if they satisfy the
same context formulas after the same sequence of actions

I Each equivalence class is represented by the type:

type(w) =̇ {(ψ , E) | w |= R[E , ψ] }

context condition
from C(P)

effect from ED,A

“ψ holds in w
after applying E”

Till Hofmann, Jens Claßen Approach · Decidable Reasoning in ES ◦ • 9 / 14

Step 2: Tracking the satisfaction of Φ

I LTLf is like LTL, but interpreted over finite traces (De Giacomo and Vardi 2015)
I Here: same syntax, but replacing propositions with ES fluent sentences

Φ ::= φ | Φ ∧ Φ | X Φ | Φ U Φ

I We adopt two notions from (Li et al. 2020):
1 Tail Normal Form (TNF): introduce explicit proposition Tail that marks the last state of a trace, e.g.,

tnf(Φ1 U Φ2) =̇ (¬Tail ∧ tnf(Φ1)) U tnf(Φ2)

2 neXt Normal Form (XNF): transform formulas such that outermost temporal operator is X , e.g.,

xnf(Φ1 U Φ2) =̇ xnf(Φ2) ∨ (xnf(Φ1) ∧ X (Φ1 U Φ2))

Till Hofmann, Jens Claßen Approach · LTLf Satisfaction • ◦ 10 / 14

Step 2: Tracking the satisfaction of Φ

I With XNF, we can interpret an LTLf formula Φ as propositional formula Φp

I Each temporal formula is a proposition
I If Φ is satisfiable, then so is Φp

I Determine propositional assignments for Φp using a SAT solver
I Split propositional assignment P intro three parts:

1 L(P) = {l | l ∈ P is a literal other than (¬)Tail }
2 X(P) = {θ | X θ ∈ P}
3 T (P) = > if Tail ∈ P and T (P) = ⊥ otherwise

Till Hofmann, Jens Claßen Approach · LTLf Satisfaction ◦ • 11 / 14

Putting Things Together: The Game Arena
I We construct a game arena AΦ

G that captures the execution of P while tracking the satisfaction of
Φ

I Each state is of the form
s = (τ , E , {(χi , θi)}i , ρ)

type of the world

accumulated effects

X(Pi) and T (Pi) of some
prop. assignment Pi

remaining program

I There is a transition s1
α−→ s2 from s1 = (τ,E ,A1, ρ1) to s2 = (τ,E2,A2, ρ2) if

• the program can transition from ρ1 to ρ2 by doing action α
• E2 are the effects resulting from applying α in τ on effects E1

• (χ2, θ2) ∈ A2 if for some (χ1, θ1) ∈ A1, there is a propositional assignment P for xnf(
∧
χp
1) such that

θ1 = ⊥ {(ψ,E2) | ψ ∈ L(P)} ⊆ τ χ2 = X(P) θ2 = T (P)

I A state is final if ρ is in a terminating configuration
I A state is accepting if (∅,>) ∈ A, i.e., Φ is satisfied
⇒ Solve the game to determine strategy

Till Hofmann, Jens Claßen Approach · Constructing the Game 12 / 14

Example with 1 room and 1 cup

I Agent:
loop:

while ∃x .OnRobot(x) do
πx : {d1}. unload(x);

πy : {r1}. goto(y);
while ∃x .DirtyDish(x , y) do
πx : {d1}. load(x , y);

goto(kitchen)
I Environment:

loop: πx : {d1}, y : {r1}.newDish(x , y)
I Initial state: At(kitchen)
I Goal:

F G ¬∃x , y .DirtyDish(x , y)

0 1 2

3 4 5 6

7 8
9

1011 12
13

1415

1617

1819

20

21

goto(r) unload(d)
goto(r) newDish(d,r)

load(d,r) goto(r)

goto(kit)

newDish(d,r)
goto(r)

goto(kit) goto(kit)
newDish(d,r)

load(d,r)
unload(d)

goto(r)

goto(kit)
goto(r)

unload(d)
goto(kit)

goto(r)

goto(kit)

Till Hofmann, Jens Claßen Approach · Example 13 / 14

Conclusion

I Golog is an expressive agent programming language based on first-order logic
I Assumption so far: The agent is under complete control
I More realistic view: Agent acts in a partially controllable environment
→ Program realization is now a synthesis task with an LTLf goal
I Approach:

• Finite abstraction of the infinite program configuration space
• Use a game-theoretic approach to determine a policy

⇒ Resulting policy guarantees to satisfy the goal, independent of the environment’s choices

Till Hofmann, Jens Claßen Conclusion 14 / 14

Appendix

Till Hofmann, Jens Claßen Outline

Computing a Strategy

I Based on the finite game arena AΦ
G , determine a terminating and winning strategy

terminating: The agent must eventually terminate by not choosing any actions
winning: In every terminating state, the temporal goal Φ must be satisfied

I In principle, we can just start with the final+accepting states SF ∩ SA and label bottom up
I Problem: Even in a final+accepting state, the environment may continue and eventually lead into

bad states
→ Guess a subset H ⊆ SF ∩ SA
I Check whether there is a strategy that enforce each play to end in H
I Label nodes bottom up with >/⊥
I Any strategy that remains in the >-labeled sub-graph is a terminating and winning strategy

Till Hofmann, Jens Claßen Appendix · Computing a Strategy 1 / 2

Bibliography (I)

De Giacomo, Giuseppe and Moshe Y. Vardi (2015). “Synthesis for LTL and LDL on Finite Traces”.
In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI). AAAI
Press, pp. 1558–1564.
Lakemeyer, Gerhard and Hector J. Levesque (2010). “A semantic characterization of a useful
fragment of the situation calculus with knowledge”. In: Artificial Intelligence 175.1, pp. 142–164.
Li, Jianwen et al. (Dec. 2020). “SAT-based Explicit LTLf Satisfiability Checking”. In: Artificial
Intelligence 289, p. 103369. doi: 10.1016/j.artint.2020.103369.
McCarthy, John and Patrick J. Hayes (1969). “Some Philosophical Problems from the Standpoint
of Artificial Intelligence”. In: Machine Intelligence 4, pp. 463–502.
Zarrieß, Benjamin and Jens Claßen (2016). “Decidable Verification of Golog Programs over
Non-Local Effect Actions”. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence
(AAAI). AAAI Press, pp. 1109–1115.

Till Hofmann, Jens Claßen Appendix · Bibliography 2 / 2

https://doi.org/10.1016/j.artint.2020.103369

Till Hofmann, Jens Claßen
Copenhagen, Denmark, November 6, 2024

	Motivation
	High-Level Reasoning on Robots
	Program Realization as Synthesis

	Approach
	Overview
	Decidable Reasoning in E S
	LTL0.7f Satisfaction
	Constructing the Game
	Example

	Conclusion
	Appendix
	Appendix
	Computing a Strategy
	Bibliography

	References

