
Strategy Synthesis for First-Order
Agent Programs over Finite Traces

35th Nordic Workshop on Programming Theory

Till Hofmann, Jens Claßen

November 6, 2024
Roskilde University



High-Level Reasoning on Robots

What is high-level reasoning in cognitive robotics?
I Given: A skilled robot capable of doing primitive actions,

e.g., pick, goto
I Goal: Determine what the robot is supposed to do
I Different methods how to accomplish this, e.g.,

• task planning (i.e., heuristic search)
• agent programs
• reactive synthesis
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The Situation Calculus and ES

I Situation calculus (McCarthy and Hayes 1969):
Formal framework based on First-order logic for describing dynamically changing worlds

I ES: A modal variant of the situation calculus (Lakemeyer and Levesque 2010)
• Modality [α]φ: φ holds after performing action α
• Modality �φ: φ holds after any sequence of actions

I All changes in the world are caused by actions
I Fluent: relation that may change its value from situation to situation
I A situation z ∈ Z is a sequence of actions describing the current state of the world, e.g.,

z = goto(room1), load(cup1, room1), goto(kitchen), unload(cup1)

I A world w ∈ W assigns a truth value to every fluent in every possible situation:

w : PF ×Z∗ → {0, 1}
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Basic Action Theories
A basic action theory (BAT) axiomatizes the world:
I The initial situation D0 describes the (possibly incomplete) initial state, e.g.:

At(kitchen) ∧ ¬∃xOnRobot(x)

I The precondition axiom Dpre states when each action can be performed:

�Poss(unload(x)) ≡ OnRobot(x) ∧ At(kitchen)

I The successor state axioms (SSAs) Dpost describe how actions change fluents:

�[a]OnRobot(x) ≡ ∃y . a = load(x , y) ∨ OnRobot(x) ∧ a 6= unload(x)

We can use a first-order theorem prover to check entailment, e.g.,:

D |= [goto(room1)][load(cup1, room1)]∃xOnRobot(x)
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High-Level Programming with Golog

loop:
while ∃x .OnRobot(x) do
πx : {d1, . . . , dm}. unload(x);

πy : {r1, . . . , rn}. goto(y);
while ∃x .DirtyDish(x , y) do
πx : {d1, . . . , dm}. load(x , y);

goto(kitchen)

Golog: High-level agent programming language
I Imperative language tailored to specify agent behavior
I Atomic instructions: ES actions
I Allows nondeterministic constructs:
π(x) Pick a value for variable x
δ∗ Repeat sub-program δ
δ1|δ2 Choose between δ1 and δ2
δ1‖δ2 Interleaved concurrency
loop and while can be defined as macros

I New modality [δ]φ:
after every possible execution of program δ, φ holds
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What is missing?

I Golog allows expressing abstract behavior in an expressive language
I However: Assumes angelic nondeterminism, i.e., agent may choose which branch to follow
I Hence, all changes in the worlds follow the agents choices
I Unrealistic in many real-world settings:

• Actions may have unintended effects, e.g., dropping a cup while moving
• Humans may interfere and change the world, e.g., placing a new dirty dish on the table
• The agent may need to react to requests → temporal goals
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Program Realization as Synthesis

I Idea: Also model uncontrollable behavior as part of the agent program, e.g.,
during execution, a new dirty dish may appear in any room:

loop: πx : {d1, . . . , dm}, y : {r1, . . . , rn}.newDish(x , y)
I Partition all actions into controllable and uncontrollable actions
I Program realization now becomes a synthesis task:

Determine a successful execution of the program while considering all possible environment choices
I Here: Goal given as LTL formula Φ, interpreted over finite traces, e.g.,

F G ¬∃x , y .DirtyDish(x , y)

I Task: Given a Golog program P = (D, δ) and a partitioning of the actions, find a policy π:
• π must follow the program δ
• π must allow all possible environment actions
• Every π trace must satisfy Φ
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Solving the Synthesis Problem: Main Challenges

1 First-order logic and thus ES is undecidable

→ Need to find a decidable fragment

2 Check the satisfaction of the temporal goal Φ

→ Split Φ into two parts:
1 Sub-formulas that are satisfied in the current state
2 Sub-formulas that must be satisfied in some future state

3 Determine a strategy that executes the program δ and satisfies Φ

→ Game-theoretic approach: construct a finite game arena and label recursively
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Step 1: Decidable Fragment

Zarrieß and Claßen 2016 describe a decidable fragment of ESG for verification:
1 The base logic is restricted to the two-variable fragment of FOL with counting (C2)

2 Successor state axioms must be acyclic; i.e., if an effect on F depends on some fluent F ′, then any
effect on F ′ may not depend on F

3 The pick operator π may only pick from a finite set of ground terms

With these restrictions, we can define a finite abstraction of a Golog program P = (D, δ):
I A characteristic graph is a finite representation of the program expression δ
I Due to restriction 3, only finitely many ground actions A may occur
I With 2, a program may only accumulate finitely many effects

→ collect them in a set ED,A
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Step 1: Decidable Fragment by Means of Finite Abstraction

I Finally, the context C(P) is a finite set of formulas consisting of:
• sentences in the initial theory
• context conditions in the SSAs
• formulas in guards and termination conditions of the program
• ES sub-formulas in the temporal goal Φ

I There are infinitely many worlds w ∈ W with w |= D
I However, we only have finitely many effects ED,A and a finite context C(P)

→ Define an equivalence relation among worlds where two worlds are equivalent if they satisfy the
same context formulas after the same sequence of actions

I Each equivalence class is represented by the type:

type(w) =̇ {(ψ , E ) | w |= R[E , ψ] }

context condition
from C(P)

effect from ED,A

“ψ holds in w
after applying E”
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Step 2: Tracking the satisfaction of Φ

I LTLf is like LTL, but interpreted over finite traces (De Giacomo and Vardi 2015)
I Here: same syntax, but replacing propositions with ES fluent sentences

Φ ::= φ | Φ ∧ Φ | X Φ | Φ U Φ

I We adopt two notions from (Li et al. 2020):
1 Tail Normal Form (TNF): introduce explicit proposition Tail that marks the last state of a trace, e.g.,

tnf(Φ1 U Φ2) =̇ (¬Tail ∧ tnf(Φ1)) U tnf(Φ2)

2 neXt Normal Form (XNF): transform formulas such that outermost temporal operator is X , e.g.,

xnf(Φ1 U Φ2) =̇ xnf(Φ2) ∨ (xnf(Φ1) ∧ X (Φ1 U Φ2))
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Step 2: Tracking the satisfaction of Φ

I With XNF, we can interpret an LTLf formula Φ as propositional formula Φp

I Each temporal formula is a proposition
I If Φ is satisfiable, then so is Φp

I Determine propositional assignments for Φp using a SAT solver
I Split propositional assignment P intro three parts:

1 L(P) = {l | l ∈ P is a literal other than (¬)Tail }
2 X(P) = {θ | X θ ∈ P}
3 T (P) = > if Tail ∈ P and T (P) = ⊥ otherwise
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Putting Things Together: The Game Arena
I We construct a game arena AΦ

G that captures the execution of P while tracking the satisfaction of
Φ

I Each state is of the form
s = ( τ , E , {( χi , θi )}i , ρ )

type of the world

accumulated effects

X(Pi ) and T (Pi ) of some
prop. assignment Pi

remaining program

I There is a transition s1
α−→ s2 from s1 = (τ,E ,A1, ρ1) to s2 = (τ,E2,A2, ρ2) if

• the program can transition from ρ1 to ρ2 by doing action α
• E2 are the effects resulting from applying α in τ on effects E1

• (χ2, θ2) ∈ A2 if for some (χ1, θ1) ∈ A1, there is a propositional assignment P for xnf(
∧
χp
1) such that

θ1 = ⊥ {(ψ,E2) | ψ ∈ L(P)} ⊆ τ χ2 = X(P) θ2 = T (P)

I A state is final if ρ is in a terminating configuration
I A state is accepting if (∅,>) ∈ A, i.e., Φ is satisfied
⇒ Solve the game to determine strategy
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Example with 1 room and 1 cup

I Agent:
loop:

while ∃x .OnRobot(x) do
πx : {d1}. unload(x);

πy : {r1}. goto(y);
while ∃x .DirtyDish(x , y) do
πx : {d1}. load(x , y);

goto(kitchen)
I Environment:

loop: πx : {d1}, y : {r1}.newDish(x , y)
I Initial state: At(kitchen)
I Goal:

F G ¬∃x , y .DirtyDish(x , y)

0 1 2

3 4 5 6

7 8
9

1011 12
13

1415

1617

1819

20

21

goto(r) unload(d)
goto(r) newDish(d,r)

load(d,r) goto(r)

goto(kit)

newDish(d,r)
goto(r)

goto(kit) goto(kit)
newDish(d,r)

load(d,r)
unload(d)

goto(r)

goto(kit)
goto(r)

unload(d)
goto(kit)

goto(r)

goto(kit)
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Conclusion

I Golog is an expressive agent programming language based on first-order logic
I Assumption so far: The agent is under complete control
I More realistic view: Agent acts in a partially controllable environment
→ Program realization is now a synthesis task with an LTLf goal
I Approach:

• Finite abstraction of the infinite program configuration space
• Use a game-theoretic approach to determine a policy

⇒ Resulting policy guarantees to satisfy the goal, independent of the environment’s choices
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Appendix
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Computing a Strategy

I Based on the finite game arena AΦ
G , determine a terminating and winning strategy

terminating: The agent must eventually terminate by not choosing any actions
winning: In every terminating state, the temporal goal Φ must be satisfied

I In principle, we can just start with the final+accepting states SF ∩ SA and label bottom up
I Problem: Even in a final+accepting state, the environment may continue and eventually lead into

bad states
→ Guess a subset H ⊆ SF ∩ SA
I Check whether there is a strategy that enforce each play to end in H
I Label nodes bottom up with >/⊥
I Any strategy that remains in the >-labeled sub-graph is a terminating and winning strategy

Till Hofmann, Jens Claßen Appendix · Computing a Strategy 1 / 2



Bibliography (I)

De Giacomo, Giuseppe and Moshe Y. Vardi (2015). “Synthesis for LTL and LDL on Finite Traces”.
In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI). AAAI
Press, pp. 1558–1564.
Lakemeyer, Gerhard and Hector J. Levesque (2010). “A semantic characterization of a useful
fragment of the situation calculus with knowledge”. In: Artificial Intelligence 175.1, pp. 142–164.
Li, Jianwen et al. (Dec. 2020). “SAT-based Explicit LTLf Satisfiability Checking”. In: Artificial
Intelligence 289, p. 103369. doi: 10.1016/j.artint.2020.103369.
McCarthy, John and Patrick J. Hayes (1969). “Some Philosophical Problems from the Standpoint
of Artificial Intelligence”. In: Machine Intelligence 4, pp. 463–502.
Zarrieß, Benjamin and Jens Claßen (2016). “Decidable Verification of Golog Programs over
Non-Local Effect Actions”. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence
(AAAI). AAAI Press, pp. 1109–1115.

Till Hofmann, Jens Claßen Appendix · Bibliography 2 / 2

https://doi.org/10.1016/j.artint.2020.103369


Till Hofmann, Jens Claßen
Copenhagen, Denmark, November 6, 2024


	Motivation
	High-Level Reasoning on Robots
	Program Realization as Synthesis

	Approach
	Overview
	Decidable Reasoning in E S
	LTL0.7f Satisfaction
	Constructing the Game
	Example

	Conclusion
	Appendix
	Appendix
	Computing a Strategy
	Bibliography

	References


